Browse Source

Fix floating-point input from decimal string.

A bug was introduced in 3480230e: The divide-and-conquer method multiplies
with a power of the base, but this power is one too much if there is a
decimal point. This may happen because digits_to_I(...) is also called
from read_float(...). As a result, the number containd spurious zeros
(in the base used for reading it).

Thanks to Thomas Luthe <tluthe@physik.uni-bielefeld.de>.
master
Richard Kreckel 10 years ago
parent
commit
44e77b58d0
  1. 372
      src/integer/conv/cl_I_from_digits.cc

372
src/integer/conv/cl_I_from_digits.cc

@ -1,178 +1,194 @@
// digits_to_I().
// General includes.
#include "base/cl_sysdep.h"
// Specification.
#include "integer/cl_I.h"
// Implementation.
#include "base/digitseq/cl_DS.h"
#include "integer/conv/cl_I_cached_power.h"
namespace cln {
static const cl_I digits_to_I_base2 (const char * MSBptr, uintC len, uintD base)
{
// base is a power of two: write the digits from least significant
// to most significant into the result NUDS. Result needs
// 1+ceiling(len*log(base)/(intDsize*log(2))) or some more digits
CL_ALLOCA_STACK;
var uintD* erg_MSDptr;
var uintC erg_len;
var uintD* erg_LSDptr;
var int b = (base==2 ? 1 : base==4 ? 2 : base==8 ? 3 : base==16 ? 4 : /*base==32*/ 5);
num_stack_alloc(1+(len*b)/intDsize,,erg_LSDptr=);
erg_MSDptr = erg_LSDptr; erg_len = 0;
var uintD d = 0; // resulting digit
var int ch_where = 0; // position of ch inside d
var uintC min_len = 0; // first non-zero digit
while (min_len < len && *(const uintB *)(MSBptr+min_len) == '0') {
++min_len;
}
while (len > min_len) {
var uintB ch = *(const uintB *)(MSBptr+len-1); // next character
if (ch!='.') { // skip decimal point
// Compute value of ch ('0'-'9','A'-'Z','a'-'z'):
ch = ch - '0';
if (ch > '9'-'0') { // not a digit?
ch = ch+'0'-'A'+10;
if (ch > 'Z'-'A'+10) {// not an uppercase letter?
ch = ch+'A'-'a'; // must be lowercase!
}
}
d = d | (uintD)ch<<ch_where;
ch_where = ch_where+b;
if (ch_where >= intDsize) {
// d is ready to be written into the NUDS:
lsprefnext(erg_MSDptr) = d;
ch_where = ch_where-intDsize;
d = (uintD)ch >> b-ch_where; // carry
erg_len++;
}
}
len--;
}
if (d != 0) { // is there anything left over?
lsprefnext(erg_MSDptr) = d;
++erg_len;
}
return NUDS_to_I(erg_MSDptr,erg_len);
}
static const cl_I digits_to_I_baseN (const char * MSBptr, uintC len, uintD base)
{
// base is not a power of two: Add digits one by one. Result nees
// 1+ceiling(len*log(base)/(intDsize*log(2))) or some more digits.
CL_ALLOCA_STACK;
var uintD* erg_MSDptr;
var uintC erg_len;
var uintD* erg_LSDptr;
var uintC need = 1+floor(len,intDsize*256); // > len/(intDsize*256) >=0
switch (base) { // multiply need with ceiling(256*log(base)/log(2)):
case 2: need = 256*need; break;
case 3: need = 406*need; break;
case 4: need = 512*need; break;
case 5: need = 595*need; break;
case 6: need = 662*need; break;
case 7: need = 719*need; break;
case 8: need = 768*need; break;
case 9: need = 812*need; break;
case 10: need = 851*need; break;
case 11: need = 886*need; break;
case 12: need = 918*need; break;
case 13: need = 948*need; break;
case 14: need = 975*need; break;
case 15: need = 1001*need; break;
case 16: need = 1024*need; break;
case 17: need = 1047*need; break;
case 18: need = 1068*need; break;
case 19: need = 1088*need; break;
case 20: need = 1107*need; break;
case 21: need = 1125*need; break;
case 22: need = 1142*need; break;
case 23: need = 1159*need; break;
case 24: need = 1174*need; break;
case 25: need = 1189*need; break;
case 26: need = 1204*need; break;
case 27: need = 1218*need; break;
case 28: need = 1231*need; break;
case 29: need = 1244*need; break;
case 30: need = 1257*need; break;
case 31: need = 1269*need; break;
case 32: need = 1280*need; break;
case 33: need = 1292*need; break;
case 34: need = 1303*need; break;
case 35: need = 1314*need; break;
case 36: need = 1324*need; break;
default: NOTREACHED
}
// Now we have need >= len*log(base)/(intDsize*log(2)).
need += 1;
// Add digits one by one:
num_stack_alloc(need,,erg_LSDptr=);
// erg_MSDptr/erg_len/erg_LSDptr is a NUDS, erg_len < need.
erg_MSDptr = erg_LSDptr; erg_len = 0;
while (len > 0) {
var uintD newdigit = 0;
var uintC chx = 0;
var uintD factor = 1;
while (chx < power_table[base-2].k && len > 0) {
var uintB ch = *(const uintB *)MSBptr; MSBptr++; // next character
if (ch!='.') { // skip decimal point
// Compute value of ('0'-'9','A'-'Z','a'-'z'):
ch = ch-'0';
if (ch > '9'-'0') { // not a digit?
ch = ch+'0'-'A'+10;
if (ch > 'Z'-'A'+10) {// not an uppercase letter?
ch = ch+'A'-'a'; // must be lowercase!
}
}
factor = factor*base;
newdigit = base*newdigit+ch;
chx++;
}
len--;
}
var uintD carry = mulusmall_loop_lsp(factor,erg_LSDptr,erg_len,newdigit);
if (carry!=0) {
// need to extend NUDS:
lsprefnext(erg_MSDptr) = carry;
erg_len++;
}
}
return NUDS_to_I(erg_MSDptr,erg_len);
}
const cl_I digits_to_I (const char * MSBptr, uintC len, uintD base)
{
if ((base & (base-1)) == 0) {
return digits_to_I_base2(MSBptr, len, base);
} else {
// This is quite insensitive to the breakeven point.
// On a 1GHz Athlon I get approximately:
// base 3: breakeven around 25000
// base 10: breakeven around 8000
// base 36: breakeven around 2000
if (len>80000/base) {
// Divide-and-conquer:
// Find largest i such that B = base^(k*2^i) satisfies B <= X.
var const cached_power_table_entry * p;
var uintC len_B = power_table[base-2].k;
for (uintC i = 0; ; i++) {
p = cached_power(base, i);
if (2*len_B >= len)
break;
len_B = len_B*2;
}
return digits_to_I(MSBptr,len-len_B,base)*p->base_pow
+digits_to_I(MSBptr+len-len_B,len_B,base);
} else {
return digits_to_I_baseN(MSBptr, len, base);
}
}
}
} // namespace cln
// digits_to_I().
// General includes.
#include "base/cl_sysdep.h"
// Specification.
#include "integer/cl_I.h"
// Implementation.
#include "base/digitseq/cl_DS.h"
#include "integer/conv/cl_I_cached_power.h"
namespace cln {
static const cl_I digits_to_I_base2 (const char * MSBptr, uintC len, uintD base)
{
// base is a power of two: write the digits from least significant
// to most significant into the result NUDS. Result needs
// 1+ceiling(len*log(base)/(intDsize*log(2))) or some more digits.
CL_ALLOCA_STACK;
var uintD* erg_MSDptr;
var uintC erg_len;
var uintD* erg_LSDptr;
var int b = (base==2 ? 1 : base==4 ? 2 : base==8 ? 3 : base==16 ? 4 : /*base==32*/ 5);
num_stack_alloc(1+(len*b)/intDsize,,erg_LSDptr=);
erg_MSDptr = erg_LSDptr; erg_len = 0;
var uintD d = 0; // resulting digit
var int ch_where = 0; // position of ch inside d
var uintC min_len = 0; // first non-zero digit
while (min_len < len && *(const uintB *)(MSBptr+min_len) == '0') {
++min_len;
}
while (len > min_len) {
var uintB ch = *(const uintB *)(MSBptr+len-1); // next character
if (ch!='.') { // skip decimal point
// Compute value of ch ('0'-'9','A'-'Z','a'-'z'):
ch = ch - '0';
if (ch > '9'-'0') { // not a digit?
ch = ch+'0'-'A'+10;
if (ch > 'Z'-'A'+10) {// not an uppercase letter?
ch = ch+'A'-'a'; // must be lowercase!
}
}
d = d | (uintD)ch<<ch_where;
ch_where = ch_where+b;
if (ch_where >= intDsize) {
// d is ready to be written into the NUDS:
lsprefnext(erg_MSDptr) = d;
ch_where = ch_where-intDsize;
d = (uintD)ch >> b-ch_where; // carry
erg_len++;
}
}
len--;
}
if (d != 0) { // is there anything left over?
lsprefnext(erg_MSDptr) = d;
++erg_len;
}
return NUDS_to_I(erg_MSDptr,erg_len);
}
static const cl_I digits_to_I_baseN (const char * MSBptr, uintC len, uintD base)
{
// base is not a power of two: Add digits one by one. Result needs
// 1+ceiling(len*log(base)/(intDsize*log(2))) or some more digits.
CL_ALLOCA_STACK;
var uintD* erg_MSDptr;
var uintC erg_len;
var uintD* erg_LSDptr;
var uintC need = 1+floor(len,intDsize*256); // > len/(intDsize*256) >=0
switch (base) { // multiply need with ceiling(256*log(base)/log(2)):
case 2: need = 256*need; break;
case 3: need = 406*need; break;
case 4: need = 512*need; break;
case 5: need = 595*need; break;
case 6: need = 662*need; break;
case 7: need = 719*need; break;
case 8: need = 768*need; break;
case 9: need = 812*need; break;
case 10: need = 851*need; break;
case 11: need = 886*need; break;
case 12: need = 918*need; break;
case 13: need = 948*need; break;
case 14: need = 975*need; break;
case 15: need = 1001*need; break;
case 16: need = 1024*need; break;
case 17: need = 1047*need; break;
case 18: need = 1068*need; break;
case 19: need = 1088*need; break;
case 20: need = 1107*need; break;
case 21: need = 1125*need; break;
case 22: need = 1142*need; break;
case 23: need = 1159*need; break;
case 24: need = 1174*need; break;
case 25: need = 1189*need; break;
case 26: need = 1204*need; break;
case 27: need = 1218*need; break;
case 28: need = 1231*need; break;
case 29: need = 1244*need; break;
case 30: need = 1257*need; break;
case 31: need = 1269*need; break;
case 32: need = 1280*need; break;
case 33: need = 1292*need; break;
case 34: need = 1303*need; break;
case 35: need = 1314*need; break;
case 36: need = 1324*need; break;
default: NOTREACHED
}
// Now we have need >= len*log(base)/(intDsize*log(2)).
need += 1;
// Add digits one by one:
num_stack_alloc(need,,erg_LSDptr=);
// erg_MSDptr/erg_len/erg_LSDptr is a NUDS, erg_len < need.
erg_MSDptr = erg_LSDptr; erg_len = 0;
while (len > 0) {
var uintD newdigit = 0;
var uintC chx = 0;
var uintD factor = 1;
while (chx < power_table[base-2].k && len > 0) {
var uintB ch = *(const uintB *)MSBptr; MSBptr++; // next character
// Compute value of ('0'-'9','A'-'Z','a'-'z'):
ch = ch-'0';
if (ch > '9'-'0') { // not a digit?
ch = ch+'0'-'A'+10;
if (ch > 'Z'-'A'+10) {// not an uppercase letter?
ch = ch+'A'-'a'; // must be lowercase!
}
}
factor = factor*base;
newdigit = base*newdigit+ch;
chx++;
len--;
}
var uintD carry = mulusmall_loop_lsp(factor,erg_LSDptr,erg_len,newdigit);
if (carry!=0) {
// need to extend NUDS:
lsprefnext(erg_MSDptr) = carry;
erg_len++;
}
}
return NUDS_to_I(erg_MSDptr,erg_len);
}
static const cl_I digits_to_I_divconq (const char * MSBptr, uintC len, uintD base)
{
// This is quite insensitive to the breakeven point.
// On a 1GHz Athlon I get approximately:
// base 3: breakeven around 25000
// base 10: breakeven around 8000
// base 36: breakeven around 2000
if (len>80000/base) {
// Divide-and-conquer:
// Find largest i such that B = base^(k*2^i) satisfies B <= X.
var const cached_power_table_entry * p;
var uintC len_B = power_table[base-2].k;
for (uintC i = 0; ; i++) {
p = cached_power(base, i);
if (2*len_B >= len)
break;
len_B = len_B*2;
}
return digits_to_I_divconq(MSBptr,len-len_B,base) * p->base_pow
+ digits_to_I_divconq(MSBptr+len-len_B,len_B,base);
} else {
return digits_to_I_baseN(MSBptr, len, base);
}
}
const cl_I digits_to_I (const char * MSBptr, uintC len, uintD base)
{
if ((base & (base-1)) == 0) {
return digits_to_I_base2(MSBptr, len, base);
} else {
// digits_to_I_divconq cannot handle decimal points, so remove it here
CL_ALLOCA_STACK;
const uintD * digits_copy;
num_stack_alloc(len,,digits_copy=);
char * copy_ptr = (char *)digits_copy;
uintC n = 0;
for (uintC i = 0; i < len; ++i) {
const char ch = MSBptr[i];
if (ch != '.') { // skip decimal point
copy_ptr[n] = ch;
n++;
}
}
return digits_to_I_divconq((const char*)digits_copy, n, base);
}
}
} // namespace cln
Loading…
Cancel
Save