Browse Source
More memory efficient Euler-Mascheroni constant:
More memory efficient Euler-Mascheroni constant:
* src/float/transcendental/cl_LF_tran.h (cl_pqd_series_stream): New. * src/float/transcendental/cl_LF_ratsumseries_stream_pqd.cc: New file. * src/float/transcendental/cl_LF_ratsumseries_stream_pqd_aux.cc: New file. * src/float/transcendental/cl_LF_eulerconst.cc: Compute series coefficients on demand, using a series stream object.master
Richard Kreckel
17 years ago
5 changed files with 154 additions and 14 deletions
-
10ChangeLog
-
33src/float/transcendental/cl_LF_eulerconst.cc
-
31src/float/transcendental/cl_LF_ratsumseries_stream_pqd.cc
-
86src/float/transcendental/cl_LF_ratsumseries_stream_pqd_aux.cc
-
8src/float/transcendental/cl_LF_tran.h
@ -0,0 +1,31 @@ |
|||
// eval_pqd_series().
|
|||
|
|||
// General includes.
|
|||
#include "cl_sysdep.h"
|
|||
|
|||
// Specification.
|
|||
#include "cl_LF_tran.h"
|
|||
|
|||
|
|||
// Implementation.
|
|||
|
|||
#include "cln/lfloat.h"
|
|||
#include "cln/integer.h"
|
|||
#include "cl_LF.h"
|
|||
|
|||
namespace cln { |
|||
|
|||
const cl_LF eval_pqd_series (uintC N, cl_pqd_series_stream& args, uintC len) |
|||
{ |
|||
if (N==0) |
|||
return cl_I_to_LF(0,len); |
|||
var cl_pqd_series_result sums; |
|||
eval_pqd_series_aux(N,args,sums); |
|||
// Instead of computing fsum = T/Q and gsum = V/(D*Q)
|
|||
// and then dividing them, to compute gsum/fsum, we save two
|
|||
// divisions by computing V/(D*T).
|
|||
return |
|||
cl_I_to_LF(sums.V,len) / The(cl_LF)(sums.D * cl_I_to_LF(sums.T,len)); |
|||
} |
|||
|
|||
} // namespace cln
|
@ -0,0 +1,86 @@ |
|||
// eval_pqd_series_aux().
|
|||
|
|||
// General includes.
|
|||
#include "cl_sysdep.h"
|
|||
|
|||
// Specification.
|
|||
#include "cl_LF_tran.h"
|
|||
|
|||
|
|||
// Implementation.
|
|||
|
|||
#include "cln/integer.h"
|
|||
#include "cln/exception.h"
|
|||
|
|||
namespace cln { |
|||
|
|||
void eval_pqd_series_aux (uintC N, cl_pqd_series_stream& args, cl_pqd_series_result& Z, bool rightmost) |
|||
{ |
|||
// N = N2-N1
|
|||
switch (N) { |
|||
case 0: |
|||
throw runtime_exception(); break; |
|||
case 1: { |
|||
var cl_pqd_series_term v0 = args.next(); // [N1]
|
|||
if (!rightmost) { Z.P = v0.p; } |
|||
Z.Q = v0.q; |
|||
Z.T = v0.p; |
|||
if (!rightmost) { Z.C = 1; } |
|||
Z.D = v0.d; |
|||
Z.V = v0.p; |
|||
break; |
|||
} |
|||
case 2: { |
|||
var cl_pqd_series_term v0 = args.next(); // [N1]
|
|||
var cl_pqd_series_term v1 = args.next(); // [N1+1]
|
|||
var cl_I p01 = v0.p * v1.p; |
|||
if (!rightmost) { Z.P = p01; } |
|||
Z.Q = v0.q * v1.q; |
|||
var cl_I p0q1 = v0.p * v1.q + p01; |
|||
Z.T = p0q1; |
|||
if (!rightmost) { Z.C = v1.d + v0.d; } |
|||
Z.D = v0.d * v1.d; |
|||
Z.V = v1.d * p0q1 + v0.d * p01; |
|||
break; |
|||
} |
|||
case 3: { |
|||
var cl_pqd_series_term v0 = args.next(); // [N1]
|
|||
var cl_pqd_series_term v1 = args.next(); // [N1+1]
|
|||
var cl_pqd_series_term v2 = args.next(); // [N1+2]
|
|||
var cl_I p01 = v0.p * v1.p; |
|||
var cl_I p012 = p01 * v2.p; |
|||
if (!rightmost) { Z.P = p012; } |
|||
Z.Q = v0.q * v1.q * v2.q; |
|||
var cl_I p0q1 = v0.p * v1.q + p01; |
|||
Z.T = v2.q * p0q1 + p012; |
|||
var cl_I d01 = v0.d * v1.d; |
|||
if (!rightmost) { Z.C = (v1.d + v0.d) * v2.d + d01; } |
|||
Z.D = d01 * v2.d; |
|||
Z.V = v2.d * (v2.q * (v1.d * p0q1 + v0.d * p01) + (v1.d + v0.d) * p012) + d01 * p012; |
|||
break; |
|||
} |
|||
default: { |
|||
var uintC Nm = N/2; // midpoint
|
|||
// Compute left part.
|
|||
var cl_pqd_series_result L; |
|||
eval_pqd_series_aux(Nm,args,L,false); |
|||
// Compute right part.
|
|||
var cl_pqd_series_result R; |
|||
eval_pqd_series_aux(N-Nm,args,R,rightmost); |
|||
// Put together partial results.
|
|||
if (!rightmost) { Z.P = L.P * R.P; } |
|||
Z.Q = L.Q * R.Q; |
|||
// Z.S = L.S + L.P/L.Q*R.S;
|
|||
var cl_I tmp = L.P * R.T; |
|||
Z.T = R.Q * L.T + tmp; |
|||
if (!rightmost) { Z.C = L.C * R.D + L.D * R.C; } |
|||
Z.D = L.D * R.D; |
|||
// Z.U = L.U + L.C/L.D * L.P/L.Q * R.S + L.P/L.Q * R.U;
|
|||
// Z.V = R.D * R.Q * L.V + R.D * L.C * L.P * R.T + L.D * L.P * R.V;
|
|||
Z.V = R.D * (R.Q * L.V + L.C * tmp) + L.D * L.P * R.V; |
|||
break; |
|||
} |
|||
} |
|||
} |
|||
|
|||
} // namespace cln
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue