diff --git a/ChangeLog b/ChangeLog index b02fc87..f00389e 100644 --- a/ChangeLog +++ b/ChangeLog @@ -1,3 +1,14 @@ +2007-04-09 Richard B. Kreckel + + More memory efficient constants: + * src/float/transcendental/cl_LF_pi.cc (compute_pi_ramanujan_163_fast): + Compute series coefficients on demand, using a series stream object. + * src/float/transcendental/cl_LF_zeta3.cc (zeta3): Likewise. + * src/float/transcendental/cl_LF_catalanconst.cc + (compute_catalanconst_ramanujan_fast): Likewise. + (compute_catalanconst_lupas): New function. + (compute_catalanconst): Simplify, based on new benchmark. + 2007-04-02 Alexei Sheplyakov Debian Bug#412103: diff --git a/src/float/transcendental/cl_LF_catalanconst.cc b/src/float/transcendental/cl_LF_catalanconst.cc index eea0258..4ebc46f 100644 --- a/src/float/transcendental/cl_LF_catalanconst.cc +++ b/src/float/transcendental/cl_LF_catalanconst.cc @@ -50,35 +50,37 @@ const cl_LF compute_catalanconst_ramanujan_fast (uintC len) { // Same formula as above, using a binary splitting evaluation. // See [Borwein, Borwein, section 10.2.3]. - var uintC actuallen = len + 2; // 2 Schutz-Digits + struct rational_series_stream : cl_pqb_series_stream { + cl_I n; + static cl_pqb_series_term computenext (cl_pqb_series_stream& thisss) + { + var rational_series_stream& thiss = (rational_series_stream&)thisss; + var cl_I n = thiss.n; + var cl_pqb_series_term result; + if (n==0) { + result.p = 1; + result.q = 1; + result.b = 1; + } else { + result.p = n; + result.b = 2*n+1; + result.q = result.b << 1; // 2*(2*n+1) + } + thiss.n = n+1; + return result; + } + rational_series_stream () + : cl_pqb_series_stream (rational_series_stream::computenext), + n (0) {} + } series; + var uintC actuallen = len + 2; // 2 guard digits // Evaluate a sum(0 <= n < N, a(n)/b(n) * (p(0)...p(n))/(q(0)...q(n))) // with appropriate N, and // a(n) = 1, b(n) = 2*n+1, // p(n) = n for n>0, q(n) = 2*(2*n+1) for n>0. var uintC N = (intDsize/2)*actuallen; // 4^-N <= 2^(-intDsize*actuallen). - CL_ALLOCA_STACK; - var cl_I* bv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var cl_I* pv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var uintC n; - init1(cl_I, bv[0]) (1); - init1(cl_I, pv[0]) (1); - init1(cl_I, qv[0]) (1); - for (n = 1; n < N; n++) { - init1(cl_I, bv[n]) (2*n+1); - init1(cl_I, pv[n]) (n); - init1(cl_I, qv[n]) (2*(2*n+1)); - } - var cl_pqb_series series; - series.bv = bv; - series.pv = pv; series.qv = qv; series.qsv = NULL; var cl_LF fsum = eval_rational_series(N,series,actuallen); - for (n = 0; n < N; n++) { - bv[n].~cl_I(); - pv[n].~cl_I(); - qv[n].~cl_I(); - } var cl_LF g = scale_float(The(cl_LF)(3*fsum) + The(cl_LF)(pi(actuallen)) @@ -229,30 +231,66 @@ const cl_LF compute_catalanconst_cvz2 (uintC len) } // Bit complexity (N = len): O(log(N)^2*M(N)). -// Timings of the above algorithms, on an i486 33 MHz, running Linux. -// N ram ramfast exp1 exp2 cvz1 cvz2 -// 10 0.055 0.068 0.32 0.91 0.076 0.11 -// 25 0.17 0.26 0.95 3.78 0.23 0.43 -// 50 0.43 0.73 2.81 11.5 0.63 1.36 -// 100 1.32 2.24 8.82 34.1 1.90 4.48 -// 250 6.60 10.4 48.7 127.5 10.3 20.8 -// 500 24.0 30.9 186 329 38.4 58.6 -// 1000 83.0 89.0 944 860 149 163 -// 2500 446 352 6964 3096 1032 545 -// 5000 1547 899 -// asymp. N^2 FAST N^2 FAST N^2 FAST + +const cl_LF compute_catalanconst_lupas (uintC len) +{ + // G = 19/18 * sum(n=0..infty, + // mul(m=1..n, -32*((80*m^3+72*m^2-18*m-19)*m^3)/ + // (10240*m^6+14336*m^5+2560*m^4-3072*m^3-888*m^2+72*m+27))). + struct rational_series_stream : cl_pq_series_stream { + cl_I n; + static cl_pq_series_term computenext (cl_pq_series_stream& thisss) + { + var rational_series_stream& thiss = (rational_series_stream&)thisss; + var cl_I n = thiss.n; + var cl_pq_series_term result; + if (zerop(n)) { + result.p = 1; + result.q = 1; + } else { + // Compute -32*((80*n^3+72*n^2-18*n-19)*n^3) (using Horner scheme): + result.p = (19+(18+(-72-80*n)*n)*n)*n*n*n << 5; + // Compute 10240*n^6+14336*n^5+2560*n^4-3072*n^3-888*n^2+72*n+27: + result.q = 27+(72+(-888+(-3072+(2560+(14336+10240*n)*n)*n)*n)*n)*n; + } + thiss.n = plus1(n); + return result; + } + rational_series_stream () + : cl_pq_series_stream (rational_series_stream::computenext), + n (0) {} + } series; + var uintC actuallen = len + 2; // 2 guard digits + var uintC N = (intDsize/2)*actuallen; + var cl_LF fsum = eval_rational_series(N,series,actuallen); + var cl_LF g = fsum*cl_I_to_LF(19,actuallen)/cl_I_to_LF(18,actuallen); + return shorten(g,len); +} +// Bit complexity (N = len): O(log(N)^2*M(N)). + +// Timings of the above algorithms, on an AMD Opteron 1.7 GHz, running Linux/x86. +// N ram ramfast exp1 exp2 cvz1 cvz2 lupas +// 25 0.0011 0.0010 0.0094 0.0107 0.0021 0.0016 0.0034 +// 50 0.0030 0.0025 0.0280 0.0317 0.0058 0.0045 0.0095 +// 100 0.0087 0.0067 0.0854 0.0941 0.0176 0.0121 0.0260 +// 250 0.043 0.029 0.462 0.393 0.088 0.055 0.109 +// 500 0.15 0.086 1.7 1.156 0.323 0.162 0.315 +// 1000 0.57 0.25 7.5 3.23 1.27 0.487 0.864 +// 2500 3.24 1.10 52.2 12.4 8.04 2.02 3.33 +// 5000 13.1 3.06 218 32.7 42.1 5.59 8.80 +// 10000 52.7 8.2 910 85.3 216.7 15.3 22.7 +// 25000 342 29.7 6403 295 1643 54.5 77.3 +// 50000 89.9 139 195 +//100000 227 363 483 +// asymp. N^2 FAST N^2 FAST N^2 FAST FAST + // (FAST means O(log(N)^2*M(N))) // -// The "exp1" and "exp2" algorithms are always about 10 to 15 times slower -// than the "ram" and "ramfast" algorithms. -// The break-even point between "ram" and "ramfast" is at about N = 1410. +// The "ramfast" algorithm is always fastest. const cl_LF compute_catalanconst (uintC len) { - if (len >= 1410) - return compute_catalanconst_ramanujan_fast(len); - else - return compute_catalanconst_ramanujan(len); + return compute_catalanconst_ramanujan_fast(len); } // Bit complexity (N := len): O(log(N)^2*M(N)). diff --git a/src/float/transcendental/cl_LF_pi.cc b/src/float/transcendental/cl_LF_pi.cc index ba8d2cd..6660f62 100644 --- a/src/float/transcendental/cl_LF_pi.cc +++ b/src/float/transcendental/cl_LF_pi.cc @@ -191,6 +191,31 @@ const cl_LF compute_pi_ramanujan_163_fast (uintC len) { // Same formula as above, using a binary splitting evaluation. // See [Borwein, Borwein, section 10.2.3]. + struct rational_series_stream : cl_pqa_series_stream { + uintC n; + static cl_pqa_series_term computenext (cl_pqa_series_stream& thisss) + { + static const cl_I A = "163096908"; + static const cl_I B = "6541681608"; + static const cl_I J1 = "10939058860032000"; // 72*abs(J) + var rational_series_stream& thiss = (rational_series_stream&)thisss; + var uintC n = thiss.n; + var cl_pqa_series_term result; + if (n==0) { + result.p = 1; + result.q = 1; + } else { + result.p = -((cl_I)(6*n-5)*(cl_I)(2*n-1)*(cl_I)(6*n-1)); + result.q = (cl_I)n*(cl_I)n*(cl_I)n*J1; + } + result.a = A+n*B; + thiss.n = n+1; + return result; + } + rational_series_stream () + : cl_pqa_series_stream (rational_series_stream::computenext), + n (0) {} + } series; var uintC actuallen = len + 4; // 4 Schutz-Digits static const cl_I A = "163096908"; static const cl_I B = "6541681608"; @@ -205,32 +230,7 @@ const cl_LF compute_pi_ramanujan_163_fast (uintC len) var uintC N = (n_slope*actuallen)/32 + 1; // N > intDsize*log(2)/log(|J|) * actuallen, hence // |J|^-N < 2^(-intDsize*actuallen). - CL_ALLOCA_STACK; - var cl_I* av = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var cl_I* pv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var uintC* qsv = (uintC*) cl_alloca(N*sizeof(uintC)); - var uintC n; - for (n = 0; n < N; n++) { - init1(cl_I, av[n]) (A+n*B); - if (n==0) { - init1(cl_I, pv[n]) (1); - init1(cl_I, qv[n]) (1); - } else { - init1(cl_I, pv[n]) (-((cl_I)(6*n-5)*(cl_I)(2*n-1)*(cl_I)(6*n-1))); - init1(cl_I, qv[n]) ((cl_I)n*(cl_I)n*(cl_I)n*J1); - } - } - var cl_pqa_series series; - series.av = av; - series.pv = pv; series.qv = qv; - series.qsv = (len >= 35 ? qsv : 0); // 5% speedup for large len's var cl_LF fsum = eval_rational_series(N,series,actuallen); - for (n = 0; n < N; n++) { - av[n].~cl_I(); - pv[n].~cl_I(); - qv[n].~cl_I(); - } static const cl_I J3 = "262537412640768000"; // -1728*J var cl_LF pires = sqrt(cl_I_to_LF(J3,actuallen)) / fsum; return shorten(pires,len); // verkürzen und fertig diff --git a/src/float/transcendental/cl_LF_zeta3.cc b/src/float/transcendental/cl_LF_zeta3.cc index 459b28d..31914d3 100644 --- a/src/float/transcendental/cl_LF_zeta3.cc +++ b/src/float/transcendental/cl_LF_zeta3.cc @@ -19,6 +19,27 @@ namespace cln { const cl_LF zeta3 (uintC len) { + struct rational_series_stream : cl_pqa_series_stream { + uintC n; + static cl_pqa_series_term computenext (cl_pqa_series_stream& thisss) + { + var rational_series_stream& thiss = (rational_series_stream&)thisss; + var uintC n = thiss.n; + var cl_pqa_series_term result; + if (n==0) { + result.p = 1; + } else { + result.p = -expt_pos(n,5); + } + result.q = expt_pos(2*n+1,5)<<5; + result.a = 205*square((cl_I)n) + 250*(cl_I)n + 77; + thiss.n = n+1; + return result; + } + rational_series_stream () + : cl_pqa_series_stream (rational_series_stream::computenext), + n (0) {} + } series; // Method: // /infinity \ // | ----- (n + 1) 2 | @@ -41,28 +62,7 @@ const cl_LF zeta3 (uintC len) var uintC actuallen = len+2; // 2 Schutz-Digits var uintC N = ceiling(actuallen*intDsize,10); // 1024^-N <= 2^(-intDsize*actuallen). - CL_ALLOCA_STACK; - var cl_I* av = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var cl_I* pv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); - var uintC n; - for (n = 0; n < N; n++) { - init1(cl_I, av[n]) (205*square((cl_I)n) + 250*(cl_I)n + 77); - if (n==0) - init1(cl_I, pv[n]) (1); - else - init1(cl_I, pv[n]) (-expt_pos(n,5)); - init1(cl_I, qv[n]) (expt_pos(2*n+1,5)<<5); - } - var cl_pqa_series series; - series.av = av; - series.pv = pv; series.qv = qv; series.qsv = NULL; var cl_LF sum = eval_rational_series(N,series,actuallen); - for (n = 0; n < N; n++) { - av[n].~cl_I(); - pv[n].~cl_I(); - qv[n].~cl_I(); - } return scale_float(shorten(sum,len),-1); } // Bit complexity (N := len): O(log(N)^2*M(N)).