You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

199 lines
3.4 KiB

25 years ago
  1. #This file was created by <bruno> Sun Feb 16 00:38:14 1997
  2. #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
  3. \lyxformat 2.10
  4. \textclass article
  5. \language default
  6. \inputencoding latin1
  7. \fontscheme default
  8. \epsfig dvips
  9. \papersize a4paper
  10. \paperfontsize 12
  11. \baselinestretch 1.00
  12. \secnumdepth 3
  13. \tocdepth 3
  14. \paragraph_separation indent
  15. \quotes_language english
  16. \quotes_times 2
  17. \paperorientation portrait
  18. \papercolumns 0
  19. \papersides 1
  20. \paperpagestyle plain
  21. \layout Standard
  22. The Hermite polynomials
  23. \begin_inset Formula \( H_{n}(x) \)
  24. \end_inset
  25. are defined through
  26. \begin_inset Formula
  27. \[
  28. H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
  29. \end_inset
  30. \layout Description
  31. Theorem:
  32. \layout Standard
  33. \begin_inset Formula \( H_{n}(x) \)
  34. \end_inset
  35. satisfies the recurrence relation
  36. \layout Standard
  37. \begin_inset Formula
  38. \[
  39. H_{0}(x)=1\]
  40. \end_inset
  41. \layout Standard
  42. \begin_inset Formula
  43. \[
  44. H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
  45. \end_inset
  46. for
  47. \begin_inset Formula \( n\geq 0 \)
  48. \end_inset
  49. and the differential equation
  50. \begin_inset Formula \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \)
  51. \end_inset
  52. for all
  53. \begin_inset Formula \( n\geq 0 \)
  54. \end_inset
  55. .
  56. \layout Description
  57. Proof:
  58. \layout Standard
  59. Let
  60. \begin_inset Formula \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \)
  61. \end_inset
  62. be the exponential generating function of the sequence of polynomials.
  63. Then, because the Taylor series development theorem holds in formal power
  64. series rings (see [1], section 2.
  65. 16), we can simplify
  66. \begin_inset Formula
  67. \begin{eqnarray*}
  68. F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
  69. & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
  70. & = & e^{2xz-z^{2}}
  71. \end{eqnarray*}
  72. \end_inset
  73. It follows that
  74. \begin_inset Formula \( \frac{d}{dz}F=(2x-2z)\cdot F \)
  75. \end_inset
  76. .
  77. This is equivalent to the claimed recurrence.
  78. \layout Standard
  79. \cursor 190
  80. Starting from this equation, we compute a linear relation for the partial
  81. derivatives of
  82. \begin_inset Formula \( F \)
  83. \end_inset
  84. .
  85. Write
  86. \begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
  87. \end_inset
  88. and
  89. \begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
  90. \end_inset
  91. .
  92. One computes
  93. \begin_inset Formula
  94. \[
  95. F=1\cdot F\]
  96. \end_inset
  97. \begin_inset Formula
  98. \[
  99. \partial _{x}F=2z\cdot F\]
  100. \end_inset
  101. \begin_inset Formula
  102. \[
  103. \partial _{x}^{2}F=4z^{2}\cdot F\]
  104. \end_inset
  105. \begin_inset Formula
  106. \[
  107. \Delta _{z}F=(2xz-2z^{2})\cdot F\]
  108. \end_inset
  109. \begin_inset Formula
  110. \[
  111. \partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
  112. \end_inset
  113. \begin_inset Formula
  114. \[
  115. \Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
  116. \end_inset
  117. Solve a homogeneous
  118. \begin_inset Formula \( 5\times 6 \)
  119. \end_inset
  120. system of linear equations over
  121. \begin_inset Formula \( Q(x) \)
  122. \end_inset
  123. to get
  124. \begin_inset Formula
  125. \[
  126. (-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
  127. \end_inset
  128. This is equivalent to the claimed equation
  129. \begin_inset Formula \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \)
  130. \end_inset
  131. .
  132. \layout Bibliography
  133. [1] Bruno Haible: D-finite power series in several variables.
  134. \shape italic
  135. Diploma thesis, University of Karlsruhe, June 1989
  136. \shape default
  137. .
  138. Sections 2.
  139. 15 and 2.
  140. 22.