|
|
#This file was created by <bruno> Sun Feb 16 14:19:06 1997 #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team \lyxformat 2.10 \textclass article \begin_preamble \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe \def\Res{\mathop{\operator@font Res}} \def\ll{\langle\!\langle} \def\gg{\rangle\!\rangle} \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
\end_preamble \language default \inputencoding latin1 \fontscheme default \epsfig dvips \papersize a4paper \paperfontsize 12 \baselinestretch 1.00 \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \quotes_language english \quotes_times 2 \paperorientation portrait \papercolumns 0 \papersides 1 \paperpagestyle plain
\layout LaTeX Title
The diagonal of a rational function \layout Description
Theorem: \layout Standard
Let \begin_inset Formula \( M \) \end_inset
be a torsion-free \begin_inset Formula \( R \) \end_inset
-module, and \begin_inset Formula \( d>0 \) \end_inset
. Let \begin_inset Formula \[ f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\]
\end_inset
be a rational function, i. e. there are \begin_inset Formula \( P\in M[x_{1},\ldots ,x_{d}] \) \end_inset
and \begin_inset Formula \( Q\in R[x_{1},\ldots ,x_{d}] \) \end_inset
with \begin_inset Formula \( Q(0,\ldots ,0)=1 \) \end_inset
and \begin_inset Formula \( Q\cdot f=P \) \end_inset
. Then the full diagonal of \begin_inset Formula \( f \) \end_inset
\begin_inset Formula \[ g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\]
\end_inset
is a D-finite element of \begin_inset Formula \( M[[x_{1}]] \) \end_inset
, w. r. t. \begin_inset Formula \( R[x_{1}] \) \end_inset
and \begin_inset Formula \( \{\partial _{x_{1}}\} \) \end_inset
.
\layout Description
Proof: \layout Standard
From the hypotheses, \begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \) \end_inset
is a torsion-free differential module over \begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \) \end_inset
w. r. t. the derivatives \begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \) \end_inset
, and \begin_inset Formula \( f \) \end_inset
is a D-finite element of \begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \) \end_inset
over \begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \) \end_inset
w. r. t. \begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \) \end_inset
. Now apply the general diagonal theorem ([1], section 2. 18) \begin_inset Formula \( d-1 \) \end_inset
times.
\layout Description
Theorem: \layout Standard
Let \begin_inset Formula \( R \) \end_inset
be an integral domain of characteristic 0 and \begin_inset Formula \( M \) \end_inset
simultaneously a torsion-free \begin_inset Formula \( R \) \end_inset
-module and a commutative \begin_inset Formula \( R \) \end_inset
-algebra without zero divisors. Let \begin_inset Formula \[ f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\]
\end_inset
be a rational function. Then the diagonal of \begin_inset Formula \( f \) \end_inset
\begin_inset Formula \[ g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\]
\end_inset
is algebraic over \begin_inset Formula \( R[x] \) \end_inset
.
\layout Description
Motivation \protected_separator of \protected_separator proof: \layout Standard
The usual proof ([2]) uses complex analysis and works only for \begin_inset Formula \( R=M=C \) \end_inset
. The idea is to compute \begin_inset Formula \[ g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\]
\end_inset
This integral, whose integrand is a rational function in \begin_inset Formula \( x \) \end_inset
and \begin_inset Formula \( z \) \end_inset
, is calculated using the residue theorem. Since \begin_inset Formula \( f(x,y) \) \end_inset
is continuous at \begin_inset Formula \( (0,0) \) \end_inset
, there is a \begin_inset Formula \( \delta >0 \) \end_inset
such that \begin_inset Formula \( f(x,y)\neq \infty \) \end_inset
for \begin_inset Formula \( |x|<\delta \) \end_inset
, \begin_inset Formula \( |y|<\delta \) \end_inset
. It follows that for all \begin_inset Formula \( \varepsilon >0 \) \end_inset
and \begin_inset Formula \( |x|<\delta \varepsilon \) \end_inset
all the poles of \begin_inset Formula \( f(xz,\frac{x}{z}) \) \end_inset
are contained in \begin_inset Formula \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \) \end_inset
. Thus the poles of \begin_inset Formula \( f(xz,\frac{x}{z}) \) \end_inset
, all algebraic functions of \begin_inset Formula \( x \) \end_inset
-- let's call them \begin_inset Formula \( \zeta _{1}(x),\ldots \zeta _{s}(x) \) \end_inset
--, can be divided up into those for which \begin_inset Formula \( |\zeta _{i}(x)|=O(|x|) \) \end_inset
as \begin_inset Formula \( x\rightarrow 0 \) \end_inset
and those for which \begin_inset Formula \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \) \end_inset
as \begin_inset Formula \( x\rightarrow 0 \) \end_inset
. It follows from the residue theorem that for \begin_inset Formula \( |x|<\delta \) \end_inset
\begin_inset Formula \[ g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\]
\end_inset
This is algebraic over \begin_inset Formula \( C(x) \) \end_inset
. Hence \begin_inset Formula \( g(x) \) \end_inset
is algebraic over \begin_inset Formula \( C(x^{1/2}) \) \end_inset
, hence also algebraic over \begin_inset Formula \( C(x) \) \end_inset
.
\layout Description
Proof: \layout Standard
Let \begin_inset Formula \[ h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\]
\end_inset
Then \begin_inset Formula \( g(x^{2}) \) \end_inset
is the coefficient of \begin_inset Formula \( z^{0} \) \end_inset
in \begin_inset Formula \( h(x,z) \) \end_inset
. Let \begin_inset Formula \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \) \end_inset
(with \begin_inset Formula \( d:=\max (\deg _{y}P,\deg _{y}Q) \) \end_inset
) be \begin_inset Quotes eld \end_inset
the denominator \begin_inset Quotes erd \end_inset
of \begin_inset Formula \( h(x,z) \) \end_inset
. We have \begin_inset Formula \( N(x,z)\in R[x,z] \) \end_inset
and \begin_inset Formula \( N\neq 0 \) \end_inset
(because \begin_inset Formula \( N(0,z)=z^{d} \) \end_inset
). Let \begin_inset Formula \( K \) \end_inset
be the quotient field of \begin_inset Formula \( R \) \end_inset
. Thus \begin_inset Formula \( N(x,z)\in K[x][z]\setminus \{0\} \) \end_inset
.
\layout Standard
It is well-known (see [3], p. 64, or [4], chap. IV, �2, prop. 8, or [5], chap. III, �1) that the splitting field of \begin_inset Formula \( N(x,z) \) \end_inset
over \begin_inset Formula \( K(x) \) \end_inset
can be embedded into a field \begin_inset Formula \( L((x^{1/r})) \) \end_inset
, where \begin_inset Formula \( r \) \end_inset
is a positive integer and \begin_inset Formula \( L \) \end_inset
is a finite-algebraic extension field of \begin_inset Formula \( K \) \end_inset
, i. e. a simple algebraic extension \begin_inset Formula \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \) \end_inset
. \layout Standard
\begin_inset Formula \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \) \end_inset
is a \begin_inset Formula \( K \) \end_inset
-vector space and a commutative \begin_inset Formula \( K \) \end_inset
-algebra without zero divisors. \begin_inset Formula \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \) \end_inset
is an \begin_inset Formula \( L \) \end_inset
-vector space and a commutative \begin_inset Formula \( L \) \end_inset
-algebra without zero divisors. \layout Standard
\begin_inset Formula \begin{eqnarray*} \widehat{M}\ll x,z\gg & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\ & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\} \end{eqnarray*}
\end_inset
is an \begin_inset Formula \( L \) \end_inset
-algebra which contains \begin_inset Formula \( \widehat{M}((x^{1/r})) \) \end_inset
.
\layout Standard
Since \begin_inset Formula \( N(x,z) \) \end_inset
splits into linear factors in \begin_inset Formula \( L((x^{1/r}))[z] \) \end_inset
, \begin_inset Formula \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \) \end_inset
, there exists a partial fraction decomposition of \begin_inset Formula \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \) \end_inset
in \begin_inset Formula \( \widehat{M}\ll x,z\gg \) \end_inset
: \layout Standard
\begin_inset Formula \[ h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\]
\end_inset
with \begin_inset Formula \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \) \end_inset
.
\layout Standard
Recall that we are looking for the coefficient of \begin_inset Formula \( z^{0} \) \end_inset
in \begin_inset Formula \( h(x,z) \) \end_inset
. We compute it separately for each summand.
\layout Standard
If \begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \) \end_inset
with \begin_inset Formula \( a\in L\setminus \{0\} \) \end_inset
, \begin_inset Formula \( m>0 \) \end_inset
, or \begin_inset Formula \( \zeta _{i}(x)=0 \) \end_inset
, we have \layout Standard
\begin_inset Formula \begin{eqnarray*} \frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\ & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\ & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}} \end{eqnarray*}
\end_inset
hence the coefficient of \begin_inset Formula \( z^{0} \) \end_inset
in \begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) \end_inset
is \begin_inset Formula \( 0 \) \end_inset
.
\layout Standard \cursor 59 If \begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \) \end_inset
with \begin_inset Formula \( a\in L\setminus \{0\} \) \end_inset
, \begin_inset Formula \( m<0 \) \end_inset
, we have \begin_inset Formula \[ \frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\]
\end_inset
hence the coefficient of \begin_inset Formula \( z^{0} \) \end_inset
in \begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) \end_inset
is \begin_inset Formula \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \) \end_inset
.
\layout Standard
The case \begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \) \end_inset
with \begin_inset Formula \( a\in L\setminus \{0\} \) \end_inset
, \begin_inset Formula \( m=0 \) \end_inset
, cannot occur, because it would imply \begin_inset Formula \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \) \end_inset
\layout Standard
Altogether we have \begin_inset Formula \[ g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
\end_inset
\layout Standard
Since all \begin_inset Formula \( \zeta _{i}(x) \) \end_inset
(in \begin_inset Formula \( L((x^{1/r})) \) \end_inset
) and all \begin_inset Formula \( P_{j}(x),P_{i,k}(x) \) \end_inset
(in \begin_inset Formula \( \widehat{M}((x^{1/r})) \) \end_inset
) are algebraic over \begin_inset Formula \( K(x) \) \end_inset
, the same holds also for \begin_inset Formula \( g(x^{2}) \) \end_inset
. Hence \begin_inset Formula \( g(x) \) \end_inset
is algebraic over \begin_inset Formula \( K(x^{1/2}) \) \end_inset
, hence also over \begin_inset Formula \( K(x) \) \end_inset
. After clearing denominators, we finally conclude that \begin_inset Formula \( g(x) \) \end_inset
is algebraic over \begin_inset Formula \( R[x] \) \end_inset
.
\layout Bibliography
[1] Bruno Haible: D-finite power series in several variables. \shape italic Diploma thesis, University of Karlsruhe, June 1989.
\shape default Sections 2. 18 and 2. 20.
\layout Bibliography
[2] M. L. J. Hautus, D. A. Klarner: The diagonal of a double power series. \shape italic Duke Math. J.
\shape default \series bold 38 \series default (1971), 229-235.
\layout Bibliography
[3] C. Chevalley: Introduction to the theory of algebraic functions of one variable. \shape italic Mathematical Surveys VI. American Mathematical Society.
\layout Bibliography
[4] Jean-Pierre Serre: Corps locaux. \shape italic Hermann. Paris \shape default 1968.
\layout Bibliography
[5] Martin Eichler: Introduction to the theory of algebraic numbers and functions.
\shape italic Academic Press. New York, London \shape default 1966.
|