You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

316 lines
6.0 KiB

25 years ago
  1. #This file was created by <bruno> Sun Feb 16 14:05:04 1997
  2. #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
  3. \lyxformat 2.10
  4. \textclass article
  5. \begin_preamble
  6. \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
  7. \def\ll{\langle\!\langle}
  8. \def\gg{\rangle\!\rangle}
  9. \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
  10. \end_preamble
  11. \language default
  12. \inputencoding latin1
  13. \fontscheme default
  14. \epsfig dvips
  15. \papersize a4paper
  16. \paperfontsize 12
  17. \baselinestretch 1.00
  18. \secnumdepth 3
  19. \tocdepth 3
  20. \paragraph_separation indent
  21. \quotes_language english
  22. \quotes_times 2
  23. \paperorientation portrait
  24. \papercolumns 0
  25. \papersides 1
  26. \paperpagestyle plain
  27. \layout Standard
  28. The Laguerre polynomials
  29. \begin_inset Formula \( L_{n}(x) \)
  30. \end_inset
  31. are defined through
  32. \begin_inset Formula
  33. \[
  34. L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
  35. \end_inset
  36. \layout Description
  37. Theorem:
  38. \layout Standard
  39. \begin_inset Formula \( L_{n}(x) \)
  40. \end_inset
  41. satisfies the recurrence relation
  42. \layout Standard
  43. \begin_inset Formula
  44. \[
  45. L_{0}(x)=1\]
  46. \end_inset
  47. \layout Standard
  48. \begin_inset Formula
  49. \[
  50. L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
  51. \end_inset
  52. for
  53. \begin_inset Formula \( n\geq 0 \)
  54. \end_inset
  55. and the differential equation
  56. \begin_inset Formula \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
  57. \end_inset
  58. for all
  59. \begin_inset Formula \( n\geq 0 \)
  60. \end_inset
  61. .
  62. \layout Description
  63. Proof:
  64. \layout Standard
  65. Let
  66. \begin_inset Formula \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \)
  67. \end_inset
  68. be the exponential generating function of the sequence of polynomials.
  69. It is the diagonal series of the power series
  70. \begin_inset Formula
  71. \[
  72. G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
  73. \end_inset
  74. Because the Taylor series development theorem holds in formal power series
  75. rings (see [1], section 2.
  76. 16), we can simplify
  77. \begin_inset Formula
  78. \begin{eqnarray*}
  79. G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
  80. & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
  81. & = & \frac{e^{-y}}{1-(x+y)z}
  82. \end{eqnarray*}
  83. \end_inset
  84. We take over the terminology from the
  85. \begin_inset Quotes eld
  86. \end_inset
  87. diag_rational
  88. \begin_inset Quotes erd
  89. \end_inset
  90. paper; here
  91. \begin_inset Formula \( R=Q[x] \)
  92. \end_inset
  93. and
  94. \begin_inset Formula \( M=Q[[x]] \)
  95. \end_inset
  96. (or, if you like it better,
  97. \begin_inset Formula \( M=H(C) \)
  98. \end_inset
  99. , the algebra of functions holomorphic in the entire complex plane).
  100. \begin_inset Formula \( G\in M[[y,z]] \)
  101. \end_inset
  102. is not rational; nevertheless we can proceed similarly to the
  103. \begin_inset Quotes eld
  104. \end_inset
  105. diag_series
  106. \begin_inset Quotes erd
  107. \end_inset
  108. paper.
  109. \begin_inset Formula \( F(z^{2}) \)
  110. \end_inset
  111. is the coefficient of
  112. \begin_inset Formula \( t^{0} \)
  113. \end_inset
  114. in
  115. \begin_inset Formula
  116. \[
  117. G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
  118. \end_inset
  119. The denominator's only zero is
  120. \begin_inset Formula \( t=\frac{xz}{1-z^{2}} \)
  121. \end_inset
  122. .
  123. We can write
  124. \begin_inset Formula
  125. \[
  126. e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
  127. \end_inset
  128. with
  129. \begin_inset Formula \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg \)
  130. \end_inset
  131. .
  132. This yields -- all computations being done in
  133. \begin_inset Formula \( M\ll z,t\gg \)
  134. \end_inset
  135. --
  136. \begin_inset Formula
  137. \begin{eqnarray*}
  138. G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
  139. & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
  140. \end{eqnarray*}
  141. \end_inset
  142. Here, the coefficient of
  143. \begin_inset Formula \( t^{0} \)
  144. \end_inset
  145. is
  146. \begin_inset Formula
  147. \[
  148. F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
  149. \end_inset
  150. hence
  151. \begin_inset Formula
  152. \[
  153. F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
  154. \end_inset
  155. \layout Standard
  156. It follows that
  157. \begin_inset Formula \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \)
  158. \end_inset
  159. .
  160. This is equivalent to the claimed recurrence.
  161. \layout Standard
  162. Starting from the closed form for
  163. \begin_inset Formula \( F \)
  164. \end_inset
  165. , we compute a linear relation for the partial derivatives of
  166. \begin_inset Formula \( F \)
  167. \end_inset
  168. .
  169. Write
  170. \begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
  171. \end_inset
  172. and
  173. \begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
  174. \end_inset
  175. .
  176. One computes
  177. \begin_inset Formula
  178. \[
  179. F=1\cdot F\]
  180. \end_inset
  181. \begin_inset Formula
  182. \[
  183. \left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
  184. \end_inset
  185. \begin_inset Formula
  186. \[
  187. \left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
  188. \end_inset
  189. \begin_inset Formula
  190. \[
  191. \left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
  192. \end_inset
  193. \begin_inset Formula
  194. \[
  195. \left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
  196. \end_inset
  197. Solve a homogeneous
  198. \begin_inset Formula \( 4\times 5 \)
  199. \end_inset
  200. system of linear equations over
  201. \begin_inset Formula \( Q(x) \)
  202. \end_inset
  203. to get
  204. \begin_inset Formula
  205. \[
  206. \left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
  207. \end_inset
  208. Divide by the first factor to get
  209. \begin_inset Formula
  210. \[
  211. (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
  212. \end_inset
  213. This is equivalent to the claimed equation
  214. \begin_inset Formula \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
  215. \end_inset
  216. .
  217. \layout Bibliography
  218. \cursor 123
  219. [1] Bruno Haible: D-finite power series in several variables.
  220. \shape italic
  221. Diploma thesis, University of Karlsruhe, June 1989
  222. \shape default
  223. .
  224. Sections 2.
  225. 15 and 2.
  226. 22.