|
|
%% This LaTeX-file was created by <bruno> Sun Feb 16 14:19:08 1997
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
%% Don't edit this file unless you are sure what you are doing.
\documentclass[12pt,a4paper,oneside,onecolumn]{article} \usepackage[]{fontenc} \usepackage[latin1]{inputenc} \usepackage[dvips]{epsfig}
%%
%% BEGIN The lyx specific LaTeX commands.
%%
\makeatletter \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
\newcommand{\lyxtitle}[1] {\thispagestyle{empty} \global\@topnum\z@ \section*{\LARGE \centering \sffamily \bfseries \protect#1 } } \newcommand{\lyxline}[1]{ {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} } \newenvironment{lyxsectionbibliography} { \section*{\refname} \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \newenvironment{lyxchapterbibliography} { \chapter*{\bibname} \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \def\lxq{"} \newenvironment{lyxcode} {\list{}{ \rightmargin\leftmargin \raggedright \itemsep 0pt \parsep 0pt \ttfamily }%
\item[] } {\endlist} \newcommand{\lyxlabel}[1]{#1 \hfill} \newenvironment{lyxlist}[1] {\begin{list}{} {\settowidth{\labelwidth}{#1} \setlength{\leftmargin}{\labelwidth} \addtolength{\leftmargin}{\labelsep} \renewcommand{\makelabel}{\lyxlabel}}} {\end{list}} \newcommand{\lyxletterstyle}{ \setlength\parskip{0.7em} \setlength\parindent{0pt} } \newcommand{\lyxaddress}[1]{ \par {\raggedright #1 \vspace{1.4em} \noindent\par} } \newcommand{\lyxrightaddress}[1]{ \par {\raggedleft \begin{tabular}{l}\ignorespaces #1 \end{tabular} \vspace{1.4em} \par} } \newcommand{\lyxformula}[1]{ \begin{eqnarray*} #1 \end{eqnarray*} } \newcommand{\lyxnumberedformula}[1]{ \begin{eqnarray} #1 \end{eqnarray} } \makeatother
%%
%% END The lyx specific LaTeX commands.
%%
\pagestyle{plain} \setcounter{secnumdepth}{3} \setcounter{tocdepth}{3}
%% Begin LyX user specified preamble:
\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
\def\Res{\mathop{\operator@font Res}} \def\ll{\langle\!\langle} \def\gg{\rangle\!\rangle} \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
%% End LyX user specified preamble.
\begin{document}
\title{The diagonal of a rational function}
\begin{description}
\item [Theorem:]~
\end{description}
Let \( M \) be a torsion-free \( R \)-module, and \( d>0 \). Let \[
f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\] be a rational function, i.e. there are \( P\in M[x_{1},\ldots ,x_{d}] \) and \( Q\in R[x_{1},\ldots ,x_{d}] \) with \( Q(0,\ldots ,0)=1 \) and \( Q\cdot f=P \). Then the full diagonal of \( f \) \[
g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\] is a D-finite element of \( M[[x_{1}]] \), w.r.t. \( R[x_{1}] \) and \( \{\partial _{x_{1}}\} \).
\begin{description}
\item [Proof:]~
\end{description}
From the hypotheses, \( M[[x_{1},\ldots ,x_{d}]] \) is a torsion-free differential module over \( R[x_{1},\ldots ,x_{d}] \) w.r.t. the derivatives \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \), and \( f \) is a D-finite element of \( M[[x_{1},\ldots ,x_{d}]] \) over \( R[x_{1},\ldots ,x_{d}] \) w.r.t. \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \). Now apply the general diagonal theorem ([1], section 2.18) \( d-1 \) times.
\begin{description}
\item [Theorem:]~
\end{description}
Let \( R \) be an integral domain of characteristic 0 and \( M \) simultaneously a torsion-free \( R \)-module and a commutative \( R \)-algebra without zero divisors. Let \[
f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\] be a rational function. Then the diagonal of \( f \) \[
g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\] is algebraic over \( R[x] \).
\begin{description}
\item [Motivation~of~proof:]~
\end{description}
The usual proof ([2]) uses complex analysis and works only for \( R=M=C \). The idea is to compute \[
g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\] This integral, whose integrand is a rational function in \( x \) and \( z \), is calculated using the residue theorem. Since \( f(x,y) \) is continuous at \( (0,0) \), there is a \( \delta >0 \) such that \( f(x,y)\neq \infty \) for \( |x|<\delta \), \( |y|<\delta \). It follows that for all \( \varepsilon >0 \) and \( |x|<\delta \varepsilon \) all the poles of \( f(xz,\frac{x}{z}) \) are contained in \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \). Thus the poles of \( f(xz,\frac{x}{z}) \), all algebraic functions of \( x \) -- let's call them \( \zeta _{1}(x),\ldots \zeta _{s}(x) \) --, can be divided up into those for which \( |\zeta _{i}(x)|=O(|x|) \) as \( x\rightarrow 0 \) and those for which \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \) as \( x\rightarrow 0 \). It follows from the residue theorem that for \( |x|<\delta \) \[
g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\] This is algebraic over \( C(x) \). Hence \( g(x) \) is algebraic over \( C(x^{1/2}) \), hence also algebraic over \( C(x) \).
\begin{description}
\item [Proof:]~
\end{description}
Let \[
h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\] Then \( g(x^{2}) \) is the coefficient of \( z^{0} \) in \( h(x,z) \). Let \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \) (with \( d:=\max (\deg _{y}P,\deg _{y}Q) \)) be ``the denominator'' of \( h(x,z) \). We have \( N(x,z)\in R[x,z] \) and \( N\neq 0 \) (because \( N(0,z)=z^{d} \)). Let \( K \) be the quotient field of \( R \). Thus \( N(x,z)\in K[x][z]\setminus \{0\} \).
It is well-known (see [3], p.64, or [4], chap. IV, �2, prop. 8, or [5], chap. III, �1) that the splitting field of \( N(x,z) \) over \( K(x) \) can be embedded into a field \( L((x^{1/r})) \), where \( r \) is a positive integer and \( L \) is a finite-algebraic extension field of \( K \), i.e. a simple algebraic extension \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \).
\( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \) is a \( K \)-vector space and a commutative \( K \)-algebra without zero divisors. \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \) is an \( L \)-vector space and a commutative \( L \)-algebra without zero divisors.
\begin{eqnarray*} \widehat{M}\ll x,z\gg & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\ & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\} \end{eqnarray*} is an \( L \)-algebra which contains \( \widehat{M}((x^{1/r})) \).
Since \( N(x,z) \) splits into linear factors in \( L((x^{1/r}))[z] \), \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \), there exists a partial fraction decomposition of \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \) in \( \widehat{M}\ll x,z\gg \):
\[
h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\] with \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \).
Recall that we are looking for the coefficient of \( z^{0} \) in \( h(x,z) \). We compute it separately for each summand.
If \( \zeta _{i}(x)=ax^{m/r}+... \) with \( a\in L\setminus \{0\} \), \( m>0 \), or \( \zeta _{i}(x)=0 \), we have
\begin{eqnarray*} \frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\ & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\ & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}} \end{eqnarray*} hence the coefficient of \( z^{0} \) in \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) is \( 0 \).
If \( \zeta _{i}(x)=ax^{m/r}+... \) with \( a\in L\setminus \{0\} \), \( m<0 \), we have \[
\frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\] hence the coefficient of \( z^{0} \) in \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) is \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \).
The case \( \zeta _{i}(x)=ax^{m/r}+... \) with \( a\in L\setminus \{0\} \), \( m=0 \), cannot occur, because it would imply \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \)
Altogether we have \[
g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
Since all \( \zeta _{i}(x) \)(in \( L((x^{1/r})) \)) and all \( P_{j}(x),P_{i,k}(x) \) (in \( \widehat{M}((x^{1/r})) \)) are algebraic over \( K(x) \), the same holds also for \( g(x^{2}) \). Hence \( g(x) \) is algebraic over \( K(x^{1/2}) \), hence also over \( K(x) \). After clearing denominators, we finally conclude that \( g(x) \) is algebraic over \( R[x] \).
\begin{lyxsectionbibliography}
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma thesis, University of Karlsruhe, June 1989. \em Sections 2.18 and 2.20.
\item [2] M. L. J. Hautus, D. A. Klarner: The diagonal of a double power series. \em Duke Math. J. \em \bfseries 38 \mdseries (1971), 229-235.
\item [3] C. Chevalley: Introduction to the theory of algebraic functions of one variable. \em Mathematical Surveys VI. American Mathematical Society.\em
\item [4] Jean-Pierre Serre: Corps locaux. \em Hermann. Paris \em 1968.
\item [5] Martin Eichler: Introduction to the theory of algebraic numbers and functions. \em Academic Press. New York, London \em 1966.
\end{lyxsectionbibliography}
\end{document}
|