You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

208 lines
5.4 KiB

25 years ago
  1. %% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:43 1997
  2. %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
  3. %% Don't edit this file unless you are sure what you are doing.
  4. \documentclass[12pt,a4paper,oneside,onecolumn]{article}
  5. \usepackage[]{fontenc}
  6. \usepackage[latin1]{inputenc}
  7. \usepackage[dvips]{epsfig}
  8. %%
  9. %% BEGIN The lyx specific LaTeX commands.
  10. %%
  11. \makeatletter
  12. \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
  13. \newcommand{\lyxtitle}[1] {\thispagestyle{empty}
  14. \global\@topnum\z@
  15. \section*{\LARGE \centering \sffamily \bfseries \protect#1 }
  16. }
  17. \newcommand{\lyxline}[1]{
  18. {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
  19. }
  20. \newenvironment{lyxsectionbibliography}
  21. {
  22. \section*{\refname}
  23. \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
  24. \begin{list}{}{
  25. \itemindent-\leftmargin
  26. \labelsep 0pt
  27. \renewcommand{\makelabel}{}
  28. }
  29. }
  30. {\end{list}}
  31. \newenvironment{lyxchapterbibliography}
  32. {
  33. \chapter*{\bibname}
  34. \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
  35. \begin{list}{}{
  36. \itemindent-\leftmargin
  37. \labelsep 0pt
  38. \renewcommand{\makelabel}{}
  39. }
  40. }
  41. {\end{list}}
  42. \def\lxq{"}
  43. \newenvironment{lyxcode}
  44. {\list{}{
  45. \rightmargin\leftmargin
  46. \raggedright
  47. \itemsep 0pt
  48. \parsep 0pt
  49. \ttfamily
  50. }%
  51. \item[]
  52. }
  53. {\endlist}
  54. \newcommand{\lyxlabel}[1]{#1 \hfill}
  55. \newenvironment{lyxlist}[1]
  56. {\begin{list}{}
  57. {\settowidth{\labelwidth}{#1}
  58. \setlength{\leftmargin}{\labelwidth}
  59. \addtolength{\leftmargin}{\labelsep}
  60. \renewcommand{\makelabel}{\lyxlabel}}}
  61. {\end{list}}
  62. \newcommand{\lyxletterstyle}{
  63. \setlength\parskip{0.7em}
  64. \setlength\parindent{0pt}
  65. }
  66. \newcommand{\lyxaddress}[1]{
  67. \par {\raggedright #1
  68. \vspace{1.4em}
  69. \noindent\par}
  70. }
  71. \newcommand{\lyxrightaddress}[1]{
  72. \par {\raggedleft \begin{tabular}{l}\ignorespaces
  73. #1
  74. \end{tabular}
  75. \vspace{1.4em}
  76. \par}
  77. }
  78. \newcommand{\lyxformula}[1]{
  79. \begin{eqnarray*}
  80. #1
  81. \end{eqnarray*}
  82. }
  83. \newcommand{\lyxnumberedformula}[1]{
  84. \begin{eqnarray}
  85. #1
  86. \end{eqnarray}
  87. }
  88. \makeatother
  89. %%
  90. %% END The lyx specific LaTeX commands.
  91. %%
  92. \pagestyle{plain}
  93. \setcounter{secnumdepth}{3}
  94. \setcounter{tocdepth}{3}
  95. \begin{document}
  96. The Tschebychev polynomials (of the 1st kind) \( T_{n}(x) \) are defined through
  97. the recurrence relation
  98. \[
  99. T_{0}(x)=1\]
  100. \[
  101. T_{1}(x)=x\]
  102. \[
  103. T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\]
  104. for \( n\geq 0 \).
  105. \begin{description}
  106. \item [Theorem:]~
  107. \end{description}
  108. \( T_{n}(x) \) satisfies the differential equation \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \) for all \( n\geq 0 \).
  109. \begin{description}
  110. \item [Proof:]~
  111. \end{description}
  112. Let \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \) be the generating function of the sequence of polynomials. The
  113. recurrence is equivalent to the equation
  114. \[
  115. (1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\]
  116. \begin{description}
  117. \item [Proof~1:]~
  118. \end{description}
  119. \( F \) is a rational function in \( z \), \( F=\frac{1-xz}{1-2xz+z^{2}} \). From the theory of recursions with
  120. constant coefficients, we know that we have to perform a partial fraction
  121. decomposition. So let \( p(z)=z^{2}-2x\cdot z+1 \) be the denominator and \( \alpha =x+\sqrt{x^{2}-1} \) and \( \alpha ^{-1} \) its zeroes.
  122. The partial fraction decomposition reads
  123. \[
  124. F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \]
  125. hence \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \). Note that the
  126. field \( Q(x)(\alpha ) \), being a finite dimensional extension field of \( Q(x) \) in characteristic
  127. 0, has a unique derivation extending \( \frac{d}{dx} \) on \( Q(x) \). We can therefore try
  128. to construct an annihilating differential operator for \( T_{n}(x) \) by combination
  129. of annihilating differential operators for \( \alpha ^{n} \) and \( \alpha ^{-n} \). In fact, \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \) satisfies
  130. \( L_{1}[\alpha ^{n}]=0 \), and \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \) satisfies \( L_{2}[\alpha ^{-n}]=0 \). A common multiple of \( L_{1} \) and \( L_{2} \) is easily found
  131. by solving an appropriate system of linear equations:
  132. \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \)
  133. It follows that both \( L[\alpha ^{n}]=0 \) and \( L[\alpha ^{-n}]=0 \), hence \( L[T_{n}(x)]=0 \).
  134. \begin{description}
  135. \item [Proof~2:]~
  136. \end{description}
  137. Starting from the above equation, we compute a linear relation for
  138. the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
  139. \[
  140. \left( 1-2xz+z^{2}\right) \cdot F=1-xz\]
  141. \[
  142. \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\]
  143. \[
  144. \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\]
  145. \[
  146. \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\]
  147. \[
  148. \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\]
  149. \[
  150. \left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\]
  151. Solve a \( 6\times 6 \) system of linear equations over \( Q(x) \) to get
  152. \[
  153. x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\]
  154. This is equivalent to the claimed equation \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \).
  155. \begin{lyxsectionbibliography}
  156. \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
  157. thesis, University of Karlsruhe, June 1989. \em Sections 2.12 and
  158. 2.15.
  159. \end{lyxsectionbibliography}
  160. \end{document}