You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

269 lines
9.7 KiB

25 years ago
  1. %% This LaTeX-file was created by <bruno> Sun Feb 16 14:19:08 1997
  2. %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
  3. %% Don't edit this file unless you are sure what you are doing.
  4. \documentclass[12pt,a4paper,oneside,onecolumn]{article}
  5. \usepackage[]{fontenc}
  6. \usepackage[latin1]{inputenc}
  7. \usepackage[dvips]{epsfig}
  8. %%
  9. %% BEGIN The lyx specific LaTeX commands.
  10. %%
  11. \makeatletter
  12. \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
  13. \newcommand{\lyxtitle}[1] {\thispagestyle{empty}
  14. \global\@topnum\z@
  15. \section*{\LARGE \centering \sffamily \bfseries \protect#1 }
  16. }
  17. \newcommand{\lyxline}[1]{
  18. {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
  19. }
  20. \newenvironment{lyxsectionbibliography}
  21. {
  22. \section*{\refname}
  23. \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
  24. \begin{list}{}{
  25. \itemindent-\leftmargin
  26. \labelsep 0pt
  27. \renewcommand{\makelabel}{}
  28. }
  29. }
  30. {\end{list}}
  31. \newenvironment{lyxchapterbibliography}
  32. {
  33. \chapter*{\bibname}
  34. \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
  35. \begin{list}{}{
  36. \itemindent-\leftmargin
  37. \labelsep 0pt
  38. \renewcommand{\makelabel}{}
  39. }
  40. }
  41. {\end{list}}
  42. \def\lxq{"}
  43. \newenvironment{lyxcode}
  44. {\list{}{
  45. \rightmargin\leftmargin
  46. \raggedright
  47. \itemsep 0pt
  48. \parsep 0pt
  49. \ttfamily
  50. }%
  51. \item[]
  52. }
  53. {\endlist}
  54. \newcommand{\lyxlabel}[1]{#1 \hfill}
  55. \newenvironment{lyxlist}[1]
  56. {\begin{list}{}
  57. {\settowidth{\labelwidth}{#1}
  58. \setlength{\leftmargin}{\labelwidth}
  59. \addtolength{\leftmargin}{\labelsep}
  60. \renewcommand{\makelabel}{\lyxlabel}}}
  61. {\end{list}}
  62. \newcommand{\lyxletterstyle}{
  63. \setlength\parskip{0.7em}
  64. \setlength\parindent{0pt}
  65. }
  66. \newcommand{\lyxaddress}[1]{
  67. \par {\raggedright #1
  68. \vspace{1.4em}
  69. \noindent\par}
  70. }
  71. \newcommand{\lyxrightaddress}[1]{
  72. \par {\raggedleft \begin{tabular}{l}\ignorespaces
  73. #1
  74. \end{tabular}
  75. \vspace{1.4em}
  76. \par}
  77. }
  78. \newcommand{\lyxformula}[1]{
  79. \begin{eqnarray*}
  80. #1
  81. \end{eqnarray*}
  82. }
  83. \newcommand{\lyxnumberedformula}[1]{
  84. \begin{eqnarray}
  85. #1
  86. \end{eqnarray}
  87. }
  88. \makeatother
  89. %%
  90. %% END The lyx specific LaTeX commands.
  91. %%
  92. \pagestyle{plain}
  93. \setcounter{secnumdepth}{3}
  94. \setcounter{tocdepth}{3}
  95. %% Begin LyX user specified preamble:
  96. \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
  97. \def\Res{\mathop{\operator@font Res}}
  98. \def\ll{\langle\!\langle}
  99. \def\gg{\rangle\!\rangle}
  100. \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
  101. %% End LyX user specified preamble.
  102. \begin{document}
  103. \title{The diagonal of a rational function}
  104. \begin{description}
  105. \item [Theorem:]~
  106. \end{description}
  107. Let \( M \) be a torsion-free \( R \)-module, and \( d>0 \). Let
  108. \[
  109. f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\]
  110. be a rational function,
  111. i.e. there are \( P\in M[x_{1},\ldots ,x_{d}] \) and \( Q\in R[x_{1},\ldots ,x_{d}] \) with \( Q(0,\ldots ,0)=1 \) and \( Q\cdot f=P \). Then the full diagonal of \( f \)
  112. \[
  113. g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\]
  114. is
  115. a D-finite element of \( M[[x_{1}]] \), w.r.t. \( R[x_{1}] \) and \( \{\partial _{x_{1}}\} \).
  116. \begin{description}
  117. \item [Proof:]~
  118. \end{description}
  119. From the hypotheses, \( M[[x_{1},\ldots ,x_{d}]] \) is a torsion-free differential module over
  120. \( R[x_{1},\ldots ,x_{d}] \) w.r.t. the derivatives \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \), and \( f \) is a D-finite element of \( M[[x_{1},\ldots ,x_{d}]] \) over
  121. \( R[x_{1},\ldots ,x_{d}] \) w.r.t. \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \). Now apply the general diagonal theorem ([1], section 2.18)
  122. \( d-1 \) times.
  123. \begin{description}
  124. \item [Theorem:]~
  125. \end{description}
  126. Let \( R \) be an integral domain of characteristic 0 and \( M \) simultaneously
  127. a torsion-free \( R \)-module and a commutative \( R \)-algebra without zero divisors.
  128. Let
  129. \[
  130. f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\]
  131. be a rational function. Then the diagonal of \( f \)
  132. \[
  133. g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\]
  134. is algebraic
  135. over \( R[x] \).
  136. \begin{description}
  137. \item [Motivation~of~proof:]~
  138. \end{description}
  139. The usual proof ([2]) uses complex analysis and works only for \( R=M=C \).
  140. The idea is to compute
  141. \[
  142. g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\]
  143. This integral, whose integrand is a rational
  144. function in \( x \) and \( z \), is calculated using the residue theorem. Since
  145. \( f(x,y) \) is continuous at \( (0,0) \), there is a \( \delta >0 \) such that \( f(x,y)\neq \infty \) for \( |x|<\delta \), \( |y|<\delta \). It follows
  146. that for all \( \varepsilon >0 \) and \( |x|<\delta \varepsilon \) all the poles of \( f(xz,\frac{x}{z}) \) are contained in \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \). Thus the
  147. poles of \( f(xz,\frac{x}{z}) \), all algebraic functions of \( x \) -- let's call them \( \zeta _{1}(x),\ldots \zeta _{s}(x) \) --,
  148. can be divided up into those for which \( |\zeta _{i}(x)|=O(|x|) \) as \( x\rightarrow 0 \) and those for which
  149. \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \) as \( x\rightarrow 0 \). It follows from the residue theorem that for \( |x|<\delta \)
  150. \[
  151. g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\]
  152. This is algebraic
  153. over \( C(x) \). Hence \( g(x) \) is algebraic over \( C(x^{1/2}) \), hence also algebraic over \( C(x) \).
  154. \begin{description}
  155. \item [Proof:]~
  156. \end{description}
  157. Let
  158. \[
  159. h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\]
  160. Then \( g(x^{2}) \) is the coefficient of \( z^{0} \) in \( h(x,z) \). Let \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \) (with \( d:=\max (\deg _{y}P,\deg _{y}Q) \)) be ``the denominator''
  161. of \( h(x,z) \). We have \( N(x,z)\in R[x,z] \) and \( N\neq 0 \) (because \( N(0,z)=z^{d} \)). Let \( K \) be the quotient field of
  162. \( R \). Thus \( N(x,z)\in K[x][z]\setminus \{0\} \).
  163. It is well-known (see [3], p.64, or [4], chap. IV, �2, prop. 8, or
  164. [5], chap. III, �1) that the splitting field of \( N(x,z) \) over \( K(x) \) can be embedded
  165. into a field \( L((x^{1/r})) \), where \( r \) is a positive integer and \( L \) is a finite-algebraic
  166. extension field of \( K \), i.e. a simple algebraic extension \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \).
  167. \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \) is a \( K \)-vector space and a commutative \( K \)-algebra without zero divisors.
  168. \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \) is an \( L \)-vector space and a commutative \( L \)-algebra without zero divisors.
  169. \begin{eqnarray*}
  170. \widehat{M}\ll x,z\gg & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\
  171. & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\}
  172. \end{eqnarray*}
  173. is an \( L \)-algebra which contains \( \widehat{M}((x^{1/r})) \).
  174. Since \( N(x,z) \) splits into linear factors in \( L((x^{1/r}))[z] \), \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \), there exists a partial
  175. fraction decomposition of \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \) in \( \widehat{M}\ll x,z\gg \):
  176. \[
  177. h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\]
  178. with \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \).
  179. Recall that we are looking for the coefficient of \( z^{0} \) in \( h(x,z) \). We compute
  180. it separately for each summand.
  181. If \( \zeta _{i}(x)=ax^{m/r}+... \) with \( a\in L\setminus \{0\} \), \( m>0 \), or \( \zeta _{i}(x)=0 \), we have
  182. \begin{eqnarray*}
  183. \frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\
  184. & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\
  185. & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}}
  186. \end{eqnarray*}
  187. hence the coefficient of \( z^{0} \) in \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) is \( 0 \).
  188. If \( \zeta _{i}(x)=ax^{m/r}+... \) with \( a\in L\setminus \{0\} \), \( m<0 \), we have
  189. \[
  190. \frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\]
  191. hence the coefficient of \( z^{0} \) in \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \) is \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \).
  192. The case \( \zeta _{i}(x)=ax^{m/r}+... \) with \( a\in L\setminus \{0\} \), \( m=0 \), cannot occur, because it would imply \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \)
  193. Altogether we have
  194. \[
  195. g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
  196. Since all \( \zeta _{i}(x) \)(in \( L((x^{1/r})) \)) and all \( P_{j}(x),P_{i,k}(x) \) (in \( \widehat{M}((x^{1/r})) \)) are algebraic over \( K(x) \), the same
  197. holds also for \( g(x^{2}) \). Hence \( g(x) \) is algebraic over \( K(x^{1/2}) \), hence also over \( K(x) \).
  198. After clearing denominators, we finally conclude that \( g(x) \) is algebraic
  199. over \( R[x] \).
  200. \begin{lyxsectionbibliography}
  201. \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
  202. thesis, University of Karlsruhe, June 1989. \em Sections 2.18 and
  203. 2.20.
  204. \item [2] M. L. J. Hautus, D. A. Klarner: The diagonal of a double power
  205. series. \em Duke Math. J. \em \bfseries 38 \mdseries (1971),
  206. 229-235.
  207. \item [3] C. Chevalley: Introduction to the theory of algebraic functions
  208. of one variable. \em Mathematical Surveys VI. American Mathematical
  209. Society.\em
  210. \item [4] Jean-Pierre Serre: Corps locaux. \em Hermann. Paris \em 1968.
  211. \item [5] Martin Eichler: Introduction to the theory of algebraic numbers
  212. and functions. \em Academic Press. New York, London \em 1966.
  213. \end{lyxsectionbibliography}
  214. \end{document}