|
|
<HTML> <HEAD> <!-- Created by texi2html 1.56k from cln.texi on 4 May 2000 -->
<TITLE>CLN, a Class Library for Numbers - 5. Input/Output</TITLE> </HEAD> <BODY> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_4.html">previous</A>, <A HREF="cln_6.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. <P><HR><P>
<H1><A NAME="SEC43" HREF="cln_toc.html#TOC43">5. Input/Output</A></H1> <P> <A NAME="IDX227"></A>
<H2><A NAME="SEC44" HREF="cln_toc.html#TOC44">5.1 Internal and printed representation</A></H2> <P> <A NAME="IDX228"></A>
<P> All computations deal with the internal representations of the numbers.
<P> Every number has an external representation as a sequence of ASCII characters. Several external representations may denote the same number, for example, "20.0" and "20.000".
<P> Converting an internal to an external representation is called "printing", <A NAME="IDX229"></A> converting an external to an internal representation is called "reading". <A NAME="IDX230"></A> In CLN, it is always true that conversion of an internal to an external representation and then back to an internal representation will yield the same internal representation. Symbolically: <CODE>read(print(x)) == x</CODE>. This is called "print-read consistency".
<P> Different types of numbers have different external representations (case is insignificant):
<DL COMPACT>
<DT>Integers <DD> External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}+. The reader also accepts the Common Lisp syntaxes <VAR>sign</VAR>{<VAR>digit</VAR>}+<CODE>.</CODE> with a trailing dot for decimal integers and the <CODE>#<VAR>n</VAR>R</CODE>, <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> prefixes.
<DT>Rational numbers <DD> External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}+<CODE>/</CODE>{<VAR>digit</VAR>}+. The <CODE>#<VAR>n</VAR>R</CODE>, <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> prefixes are allowed here as well.
<DT>Floating-point numbers <DD> External representation: <VAR>sign</VAR>{<VAR>digit</VAR>}*<VAR>exponent</VAR> or <VAR>sign</VAR>{<VAR>digit</VAR>}*<CODE>.</CODE>{<VAR>digit</VAR>}*<VAR>exponent</VAR> or <VAR>sign</VAR>{<VAR>digit</VAR>}*<CODE>.</CODE>{<VAR>digit</VAR>}+. A precision specifier of the form _<VAR>prec</VAR> may be appended. There must be at least one digit in the non-exponent part. The exponent has the syntax <VAR>expmarker</VAR> <VAR>expsign</VAR> {<VAR>digit</VAR>}+. The exponent marker is
<UL> <LI>
<SAMP>`s'</SAMP> for short-floats, <LI>
<SAMP>`f'</SAMP> for single-floats, <LI>
<SAMP>`d'</SAMP> for double-floats, <LI>
<SAMP>`L'</SAMP> for long-floats, </UL>
or <SAMP>`e'</SAMP>, which denotes a default float format. The precision specifying suffix has the syntax _<VAR>prec</VAR> where <VAR>prec</VAR> denotes the number of valid mantissa digits (in decimal, excluding leading zeroes), cf. also function <SAMP>`cl_float_format'</SAMP>.
<DT>Complex numbers <DD> External representation:
<UL> <LI>
In algebraic notation: <CODE><VAR>realpart</VAR>+<VAR>imagpart</VAR>i</CODE>. Of course, if <VAR>imagpart</VAR> is negative, its printed representation begins with a <SAMP>`-'</SAMP>, and the <SAMP>`+'</SAMP> between <VAR>realpart</VAR> and <VAR>imagpart</VAR> may be omitted. Note that this notation cannot be used when the <VAR>imagpart</VAR> is rational and the rational number's base is >18, because the <SAMP>`i'</SAMP> is then read as a digit. <LI>
In Common Lisp notation: <CODE>#C(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE>. </UL>
</DL>
<H2><A NAME="SEC45" HREF="cln_toc.html#TOC45">5.2 Input functions</A></H2>
<P> Including <CODE><cl_io.h></CODE> defines a type <CODE>cl_istream</CODE>, which is the type of the first argument to all input functions. Unless you build and use CLN with the macro CL_IO_STDIO being defined, <CODE>cl_istream</CODE> is the same as <CODE>istream&</CODE>.
<P> The variable
<UL> <LI>
<CODE>cl_istream cl_stdin</CODE> </UL>
<P> contains the standard input stream.
<P> These are the simple input functions:
<DL COMPACT>
<DT><CODE>int freadchar (cl_istream stream)</CODE> <DD> Reads a character from <CODE>stream</CODE>. Returns <CODE>cl_EOF</CODE> (not a <SAMP>`char'</SAMP>!) if the end of stream was encountered or an error occurred.
<DT><CODE>int funreadchar (cl_istream stream, int c)</CODE> <DD> Puts back <CODE>c</CODE> onto <CODE>stream</CODE>. <CODE>c</CODE> must be the result of the last <CODE>freadchar</CODE> operation on <CODE>stream</CODE>. </DL>
<P> Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> defines, in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, the following input function:
<DL COMPACT>
<DT><CODE>cl_istream operator>> (cl_istream stream, <VAR>type</VAR>& result)</CODE> <DD> Reads a number from <CODE>stream</CODE> and stores it in the <CODE>result</CODE>. </DL>
<P> The most flexible input functions, defined in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, are the following:
<DL COMPACT>
<DT><CODE>cl_N read_complex (cl_istream stream, const cl_read_flags& flags)</CODE> <DD> <DT><CODE>cl_R read_real (cl_istream stream, const cl_read_flags& flags)</CODE> <DD> <DT><CODE>cl_F read_float (cl_istream stream, const cl_read_flags& flags)</CODE> <DD> <DT><CODE>cl_RA read_rational (cl_istream stream, const cl_read_flags& flags)</CODE> <DD> <DT><CODE>cl_I read_integer (cl_istream stream, const cl_read_flags& flags)</CODE> <DD> Reads a number from <CODE>stream</CODE>. The <CODE>flags</CODE> are parameters which affect the input syntax. Whitespace before the number is silently skipped.
<DT><CODE>cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> <DD> <DT><CODE>cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> <DD> <DT><CODE>cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> <DD> <DT><CODE>cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> <DD> <DT><CODE>cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)</CODE> <DD> Reads a number from a string in memory. The <CODE>flags</CODE> are parameters which affect the input syntax. The string starts at <CODE>string</CODE> and ends at <CODE>string_limit</CODE> (exclusive limit). <CODE>string_limit</CODE> may also be <CODE>NULL</CODE>, denoting the entire string, i.e. equivalent to <CODE>string_limit = string + strlen(string)</CODE>. If <CODE>end_of_parse</CODE> is <CODE>NULL</CODE>, the string in memory must contain exactly one number and nothing more, else a fatal error will be signalled. If <CODE>end_of_parse</CODE> is not <CODE>NULL</CODE>, <CODE>*end_of_parse</CODE> will be assigned a pointer past the last parsed character (i.e. <CODE>string_limit</CODE> if nothing came after the number). Whitespace is not allowed. </DL>
<P> The structure <CODE>cl_read_flags</CODE> contains the following fields:
<DL COMPACT>
<DT><CODE>cl_read_syntax_t syntax</CODE> <DD> The possible results of the read operation. Possible values are <CODE>syntax_number</CODE>, <CODE>syntax_real</CODE>, <CODE>syntax_rational</CODE>, <CODE>syntax_integer</CODE>, <CODE>syntax_float</CODE>, <CODE>syntax_sfloat</CODE>, <CODE>syntax_ffloat</CODE>, <CODE>syntax_dfloat</CODE>, <CODE>syntax_lfloat</CODE>.
<DT><CODE>cl_read_lsyntax_t lsyntax</CODE> <DD> Specifies the language-dependent syntax variant for the read operation. Possible values are
<DL COMPACT>
<DT><CODE>lsyntax_standard</CODE> <DD> accept standard algebraic notation only, no complex numbers, <DT><CODE>lsyntax_algebraic</CODE> <DD> accept the algebraic notation <CODE><VAR>x</VAR>+<VAR>y</VAR>i</CODE> for complex numbers, <DT><CODE>lsyntax_commonlisp</CODE> <DD> accept the <CODE>#b</CODE>, <CODE>#o</CODE>, <CODE>#x</CODE> syntaxes for binary, octal, hexadecimal numbers, <CODE>#<VAR>base</VAR>R</CODE> for rational numbers in a given base, <CODE>#c(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE> for complex numbers, <DT><CODE>lsyntax_all</CODE> <DD> accept all of these extensions. </DL>
<DT><CODE>unsigned int rational_base</CODE> <DD> The base in which rational numbers are read.
<DT><CODE>cl_float_format_t float_flags.default_float_format</CODE> <DD> The float format used when reading floats with exponent marker <SAMP>`e'</SAMP>.
<DT><CODE>cl_float_format_t float_flags.default_lfloat_format</CODE> <DD> The float format used when reading floats with exponent marker <SAMP>`l'</SAMP>.
<DT><CODE>cl_boolean float_flags.mantissa_dependent_float_format</CODE> <DD> When this flag is true, floats specified with more digits than corresponding to the exponent marker they contain, but without <VAR>_nnn</VAR> suffix, will get a precision corresponding to their number of significant digits. </DL>
<H2><A NAME="SEC46" HREF="cln_toc.html#TOC46">5.3 Output functions</A></H2>
<P> Including <CODE><cl_io.h></CODE> defines a type <CODE>cl_ostream</CODE>, which is the type of the first argument to all output functions. Unless you build and use CLN with the macro CL_IO_STDIO being defined, <CODE>cl_ostream</CODE> is the same as <CODE>ostream&</CODE>.
<P> The variable
<UL> <LI>
<CODE>cl_ostream cl_stdout</CODE> </UL>
<P> contains the standard output stream.
<P> The variable
<UL> <LI>
<CODE>cl_ostream cl_stderr</CODE> </UL>
<P> contains the standard error output stream.
<P> These are the simple output functions:
<DL COMPACT>
<DT><CODE>void fprintchar (cl_ostream stream, char c)</CODE> <DD> Prints the character <CODE>x</CODE> literally on the <CODE>stream</CODE>.
<DT><CODE>void fprint (cl_ostream stream, const char * string)</CODE> <DD> Prints the <CODE>string</CODE> literally on the <CODE>stream</CODE>.
<DT><CODE>void fprintdecimal (cl_ostream stream, int x)</CODE> <DD> <DT><CODE>void fprintdecimal (cl_ostream stream, const cl_I& x)</CODE> <DD> Prints the integer <CODE>x</CODE> in decimal on the <CODE>stream</CODE>.
<DT><CODE>void fprintbinary (cl_ostream stream, const cl_I& x)</CODE> <DD> Prints the integer <CODE>x</CODE> in binary (base 2, without prefix) on the <CODE>stream</CODE>.
<DT><CODE>void fprintoctal (cl_ostream stream, const cl_I& x)</CODE> <DD> Prints the integer <CODE>x</CODE> in octal (base 8, without prefix) on the <CODE>stream</CODE>.
<DT><CODE>void fprinthexadecimal (cl_ostream stream, const cl_I& x)</CODE> <DD> Prints the integer <CODE>x</CODE> in hexadecimal (base 16, without prefix) on the <CODE>stream</CODE>. </DL>
<P> Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> defines, in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, the following output functions:
<DL COMPACT>
<DT><CODE>void fprint (cl_ostream stream, const <VAR>type</VAR>& x)</CODE> <DD> <DT><CODE>cl_ostream operator<< (cl_ostream stream, const <VAR>type</VAR>& x)</CODE> <DD> Prints the number <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>. The <CODE>ostream</CODE> flags and settings (flags, width and locale) are ignored. </DL>
<P> The most flexible output function, defined in <CODE><cl_<VAR>type</VAR>_io.h></CODE>, are the following:
<PRE> void print_complex (cl_ostream stream, const cl_print_flags& flags, const cl_N& z); void print_real (cl_ostream stream, const cl_print_flags& flags, const cl_R& z); void print_float (cl_ostream stream, const cl_print_flags& flags, const cl_F& z); void print_rational (cl_ostream stream, const cl_print_flags& flags, const cl_RA& z); void print_integer (cl_ostream stream, const cl_print_flags& flags, const cl_I& z); </PRE>
<P> Prints the number <CODE>x</CODE> on the <CODE>stream</CODE>. The <CODE>flags</CODE> are parameters which affect the output.
<P> The structure type <CODE>cl_print_flags</CODE> contains the following fields:
<DL COMPACT>
<DT><CODE>unsigned int rational_base</CODE> <DD> The base in which rational numbers are printed. Default is <CODE>10</CODE>.
<DT><CODE>cl_boolean rational_readably</CODE> <DD> If this flag is true, rational numbers are printed with radix specifiers in Common Lisp syntax (<CODE>#<VAR>n</VAR>R</CODE> or <CODE>#b</CODE> or <CODE>#o</CODE> or <CODE>#x</CODE> prefixes, trailing dot). Default is false.
<DT><CODE>cl_boolean float_readably</CODE> <DD> If this flag is true, type specific exponent markers have precedence over 'E'. Default is false.
<DT><CODE>cl_float_format_t default_float_format</CODE> <DD> Floating point numbers of this format will be printed using the 'E' exponent marker. Default is <CODE>cl_float_format_ffloat</CODE>.
<DT><CODE>cl_boolean complex_readably</CODE> <DD> If this flag is true, complex numbers will be printed using the Common Lisp syntax <CODE>#C(<VAR>realpart</VAR> <VAR>imagpart</VAR>)</CODE>. Default is false.
<DT><CODE>cl_string univpoly_varname</CODE> <DD> Univariate polynomials with no explicit indeterminate name will be printed using this variable name. Default is <CODE>"x"</CODE>. </DL>
<P> The global variable <CODE>cl_default_print_flags</CODE> contains the default values, used by the function <CODE>fprint</CODE>.
<P><HR><P> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_4.html">previous</A>, <A HREF="cln_6.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. </BODY> </HTML>
|