|
|
%% This LaTeX-file was created by <bruno> Sun Feb 16 14:06:08 1997
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
%% Don't edit this file unless you are sure what you are doing.
\documentclass[12pt,a4paper,oneside,onecolumn]{article} \usepackage[]{fontenc} \usepackage[latin1]{inputenc} \usepackage[dvips]{epsfig}
%%
%% BEGIN The lyx specific LaTeX commands.
%%
\makeatletter \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
\newcommand{\lyxtitle}[1] {\thispagestyle{empty} \global\@topnum\z@ \section*{\LARGE \centering \sffamily \bfseries \protect#1 } } \newcommand{\lyxline}[1]{ {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} } \newenvironment{lyxsectionbibliography} { \section*{\refname} \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \newenvironment{lyxchapterbibliography} { \chapter*{\bibname} \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \def\lxq{"} \newenvironment{lyxcode} {\list{}{ \rightmargin\leftmargin \raggedright \itemsep 0pt \parsep 0pt \ttfamily }%
\item[] } {\endlist} \newcommand{\lyxlabel}[1]{#1 \hfill} \newenvironment{lyxlist}[1] {\begin{list}{} {\settowidth{\labelwidth}{#1} \setlength{\leftmargin}{\labelwidth} \addtolength{\leftmargin}{\labelsep} \renewcommand{\makelabel}{\lyxlabel}}} {\end{list}} \newcommand{\lyxletterstyle}{ \setlength\parskip{0.7em} \setlength\parindent{0pt} } \newcommand{\lyxaddress}[1]{ \par {\raggedright #1 \vspace{1.4em} \noindent\par} } \newcommand{\lyxrightaddress}[1]{ \par {\raggedleft \begin{tabular}{l}\ignorespaces #1 \end{tabular} \vspace{1.4em} \par} } \newcommand{\lyxformula}[1]{ \begin{eqnarray*} #1 \end{eqnarray*} } \newcommand{\lyxnumberedformula}[1]{ \begin{eqnarray} #1 \end{eqnarray} } \makeatother
%%
%% END The lyx specific LaTeX commands.
%%
\pagestyle{plain} \setcounter{secnumdepth}{3} \setcounter{tocdepth}{3}
%% Begin LyX user specified preamble:
\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
\def\ll{\langle\!\langle} \def\gg{\rangle\!\rangle} \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
%% End LyX user specified preamble.
\begin{document}
The Laguerre polynomials \( L_{n}(x) \) are defined through \[
L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
\begin{description}
\item [Theorem:]~
\end{description}
\( L_{n}(x) \) satisfies the recurrence relation
\[
L_{0}(x)=1\]
\[
L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\] for \( n\geq 0 \) and the differential equation \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) for all \( n\geq 0 \).
\begin{description}
\item [Proof:]~
\end{description}
Let \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \) be the exponential generating function of the sequence of polynomials. It is the diagonal series of the power series \[
G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\] Because the Taylor series development theorem holds in formal power series rings (see [1], section 2.16), we can simplify \begin{eqnarray*} G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\ & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\ & = & \frac{e^{-y}}{1-(x+y)z} \end{eqnarray*} We take over the terminology from the ``diag\_rational'' paper; here \( R=Q[x] \) and \( M=Q[[x]] \) (or, if you like it better, \( M=H(C) \), the algebra of functions holomorphic in the entire complex plane). \( G\in M[[y,z]] \) is not rational; nevertheless we can proceed similarly to the ``diag\_series'' paper. \( F(z^{2}) \) is the coefficient of \( t^{0} \) in \[
G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \] The denominator's only zero is \( t=\frac{xz}{1-z^{2}} \). We can write \[
e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\] with \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg \). This yields -- all computations being done in \( M\ll z,t\gg \) -- \begin{eqnarray*} G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\ & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t) \end{eqnarray*} Here, the coefficient of \( t^{0} \) is \[
F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\] hence \[
F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
It follows that \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \). This is equivalent to the claimed recurrence.
Starting from the closed form for \( F \), we compute a linear relation for the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes \[
F=1\cdot F\]
\[
\left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
\[
\left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
\[
\left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
\[
\left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\] Solve a homogeneous \( 4\times 5 \) system of linear equations over \( Q(x) \) to get \[
\left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\] Divide by the first factor to get \[
(1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\] This is equivalent to the claimed equation \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \).
\begin{lyxsectionbibliography}
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and 2.22.
\end{lyxsectionbibliography}
\end{document}
|