You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

763 lines
13 KiB

25 years ago
  1. #This file was created by <bruno> Sun Feb 16 14:19:06 1997
  2. #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
  3. \lyxformat 2.10
  4. \textclass article
  5. \begin_preamble
  6. \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
  7. \def\Res{\mathop{\operator@font Res}}
  8. \def\ll{\langle\!\langle}
  9. \def\gg{\rangle\!\rangle}
  10. \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
  11. \end_preamble
  12. \language default
  13. \inputencoding latin1
  14. \fontscheme default
  15. \epsfig dvips
  16. \papersize a4paper
  17. \paperfontsize 12
  18. \baselinestretch 1.00
  19. \secnumdepth 3
  20. \tocdepth 3
  21. \paragraph_separation indent
  22. \quotes_language english
  23. \quotes_times 2
  24. \paperorientation portrait
  25. \papercolumns 0
  26. \papersides 1
  27. \paperpagestyle plain
  28. \layout LaTeX Title
  29. The diagonal of a rational function
  30. \layout Description
  31. Theorem:
  32. \layout Standard
  33. Let
  34. \begin_inset Formula \( M \)
  35. \end_inset
  36. be a torsion-free
  37. \begin_inset Formula \( R \)
  38. \end_inset
  39. -module, and
  40. \begin_inset Formula \( d>0 \)
  41. \end_inset
  42. .
  43. Let
  44. \begin_inset Formula
  45. \[
  46. f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\]
  47. \end_inset
  48. be a rational function, i.
  49. e.
  50. there are
  51. \begin_inset Formula \( P\in M[x_{1},\ldots ,x_{d}] \)
  52. \end_inset
  53. and
  54. \begin_inset Formula \( Q\in R[x_{1},\ldots ,x_{d}] \)
  55. \end_inset
  56. with
  57. \begin_inset Formula \( Q(0,\ldots ,0)=1 \)
  58. \end_inset
  59. and
  60. \begin_inset Formula \( Q\cdot f=P \)
  61. \end_inset
  62. .
  63. Then the full diagonal of
  64. \begin_inset Formula \( f \)
  65. \end_inset
  66. \begin_inset Formula
  67. \[
  68. g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\]
  69. \end_inset
  70. is a D-finite element of
  71. \begin_inset Formula \( M[[x_{1}]] \)
  72. \end_inset
  73. , w.
  74. r.
  75. t.
  76. \begin_inset Formula \( R[x_{1}] \)
  77. \end_inset
  78. and
  79. \begin_inset Formula \( \{\partial _{x_{1}}\} \)
  80. \end_inset
  81. .
  82. \layout Description
  83. Proof:
  84. \layout Standard
  85. From the hypotheses,
  86. \begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \)
  87. \end_inset
  88. is a torsion-free differential module over
  89. \begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \)
  90. \end_inset
  91. w.
  92. r.
  93. t.
  94. the derivatives
  95. \begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
  96. \end_inset
  97. , and
  98. \begin_inset Formula \( f \)
  99. \end_inset
  100. is a D-finite element of
  101. \begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \)
  102. \end_inset
  103. over
  104. \begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \)
  105. \end_inset
  106. w.
  107. r.
  108. t.
  109. \begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
  110. \end_inset
  111. .
  112. Now apply the general diagonal theorem ([1], section 2.
  113. 18)
  114. \begin_inset Formula \( d-1 \)
  115. \end_inset
  116. times.
  117. \layout Description
  118. Theorem:
  119. \layout Standard
  120. Let
  121. \begin_inset Formula \( R \)
  122. \end_inset
  123. be an integral domain of characteristic 0 and
  124. \begin_inset Formula \( M \)
  125. \end_inset
  126. simultaneously a torsion-free
  127. \begin_inset Formula \( R \)
  128. \end_inset
  129. -module and a commutative
  130. \begin_inset Formula \( R \)
  131. \end_inset
  132. -algebra without zero divisors.
  133. Let
  134. \begin_inset Formula
  135. \[
  136. f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\]
  137. \end_inset
  138. be a rational function.
  139. Then the diagonal of
  140. \begin_inset Formula \( f \)
  141. \end_inset
  142. \begin_inset Formula
  143. \[
  144. g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\]
  145. \end_inset
  146. is algebraic over
  147. \begin_inset Formula \( R[x] \)
  148. \end_inset
  149. .
  150. \layout Description
  151. Motivation
  152. \protected_separator
  153. of
  154. \protected_separator
  155. proof:
  156. \layout Standard
  157. The usual proof ([2]) uses complex analysis and works only for
  158. \begin_inset Formula \( R=M=C \)
  159. \end_inset
  160. .
  161. The idea is to compute
  162. \begin_inset Formula
  163. \[
  164. g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\]
  165. \end_inset
  166. This integral, whose integrand is a rational function in
  167. \begin_inset Formula \( x \)
  168. \end_inset
  169. and
  170. \begin_inset Formula \( z \)
  171. \end_inset
  172. , is calculated using the residue theorem.
  173. Since
  174. \begin_inset Formula \( f(x,y) \)
  175. \end_inset
  176. is continuous at
  177. \begin_inset Formula \( (0,0) \)
  178. \end_inset
  179. , there is a
  180. \begin_inset Formula \( \delta >0 \)
  181. \end_inset
  182. such that
  183. \begin_inset Formula \( f(x,y)\neq \infty \)
  184. \end_inset
  185. for
  186. \begin_inset Formula \( |x|<\delta \)
  187. \end_inset
  188. ,
  189. \begin_inset Formula \( |y|<\delta \)
  190. \end_inset
  191. .
  192. It follows that for all
  193. \begin_inset Formula \( \varepsilon >0 \)
  194. \end_inset
  195. and
  196. \begin_inset Formula \( |x|<\delta \varepsilon \)
  197. \end_inset
  198. all the poles of
  199. \begin_inset Formula \( f(xz,\frac{x}{z}) \)
  200. \end_inset
  201. are contained in
  202. \begin_inset Formula \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \)
  203. \end_inset
  204. .
  205. Thus the poles of
  206. \begin_inset Formula \( f(xz,\frac{x}{z}) \)
  207. \end_inset
  208. , all algebraic functions of
  209. \begin_inset Formula \( x \)
  210. \end_inset
  211. -- let's call them
  212. \begin_inset Formula \( \zeta _{1}(x),\ldots \zeta _{s}(x) \)
  213. \end_inset
  214. --, can be divided up into those for which
  215. \begin_inset Formula \( |\zeta _{i}(x)|=O(|x|) \)
  216. \end_inset
  217. as
  218. \begin_inset Formula \( x\rightarrow 0 \)
  219. \end_inset
  220. and those for which
  221. \begin_inset Formula \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \)
  222. \end_inset
  223. as
  224. \begin_inset Formula \( x\rightarrow 0 \)
  225. \end_inset
  226. .
  227. It follows from the residue theorem that for
  228. \begin_inset Formula \( |x|<\delta \)
  229. \end_inset
  230. \begin_inset Formula
  231. \[
  232. g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\]
  233. \end_inset
  234. This is algebraic over
  235. \begin_inset Formula \( C(x) \)
  236. \end_inset
  237. .
  238. Hence
  239. \begin_inset Formula \( g(x) \)
  240. \end_inset
  241. is algebraic over
  242. \begin_inset Formula \( C(x^{1/2}) \)
  243. \end_inset
  244. , hence also algebraic over
  245. \begin_inset Formula \( C(x) \)
  246. \end_inset
  247. .
  248. \layout Description
  249. Proof:
  250. \layout Standard
  251. Let
  252. \begin_inset Formula
  253. \[
  254. h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\]
  255. \end_inset
  256. Then
  257. \begin_inset Formula \( g(x^{2}) \)
  258. \end_inset
  259. is the coefficient of
  260. \begin_inset Formula \( z^{0} \)
  261. \end_inset
  262. in
  263. \begin_inset Formula \( h(x,z) \)
  264. \end_inset
  265. .
  266. Let
  267. \begin_inset Formula \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \)
  268. \end_inset
  269. (with
  270. \begin_inset Formula \( d:=\max (\deg _{y}P,\deg _{y}Q) \)
  271. \end_inset
  272. ) be
  273. \begin_inset Quotes eld
  274. \end_inset
  275. the denominator
  276. \begin_inset Quotes erd
  277. \end_inset
  278. of
  279. \begin_inset Formula \( h(x,z) \)
  280. \end_inset
  281. .
  282. We have
  283. \begin_inset Formula \( N(x,z)\in R[x,z] \)
  284. \end_inset
  285. and
  286. \begin_inset Formula \( N\neq 0 \)
  287. \end_inset
  288. (because
  289. \begin_inset Formula \( N(0,z)=z^{d} \)
  290. \end_inset
  291. ).
  292. Let
  293. \begin_inset Formula \( K \)
  294. \end_inset
  295. be the quotient field of
  296. \begin_inset Formula \( R \)
  297. \end_inset
  298. .
  299. Thus
  300. \begin_inset Formula \( N(x,z)\in K[x][z]\setminus \{0\} \)
  301. \end_inset
  302. .
  303. \layout Standard
  304. It is well-known (see [3], p.
  305. 64, or [4], chap.
  306. IV, �2, prop.
  307. 8, or [5], chap.
  308. III, �1) that the splitting field of
  309. \begin_inset Formula \( N(x,z) \)
  310. \end_inset
  311. over
  312. \begin_inset Formula \( K(x) \)
  313. \end_inset
  314. can be embedded into a field
  315. \begin_inset Formula \( L((x^{1/r})) \)
  316. \end_inset
  317. , where
  318. \begin_inset Formula \( r \)
  319. \end_inset
  320. is a positive integer and
  321. \begin_inset Formula \( L \)
  322. \end_inset
  323. is a finite-algebraic extension field of
  324. \begin_inset Formula \( K \)
  325. \end_inset
  326. , i.
  327. e.
  328. a simple algebraic extension
  329. \begin_inset Formula \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \)
  330. \end_inset
  331. .
  332. \layout Standard
  333. \begin_inset Formula \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \)
  334. \end_inset
  335. is a
  336. \begin_inset Formula \( K \)
  337. \end_inset
  338. -vector space and a commutative
  339. \begin_inset Formula \( K \)
  340. \end_inset
  341. -algebra without zero divisors.
  342. \begin_inset Formula \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \)
  343. \end_inset
  344. is an
  345. \begin_inset Formula \( L \)
  346. \end_inset
  347. -vector space and a commutative
  348. \begin_inset Formula \( L \)
  349. \end_inset
  350. -algebra without zero divisors.
  351. \layout Standard
  352. \begin_inset Formula
  353. \begin{eqnarray*}
  354. \widehat{M}\ll x,z\gg & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\
  355. & = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\}
  356. \end{eqnarray*}
  357. \end_inset
  358. is an
  359. \begin_inset Formula \( L \)
  360. \end_inset
  361. -algebra which contains
  362. \begin_inset Formula \( \widehat{M}((x^{1/r})) \)
  363. \end_inset
  364. .
  365. \layout Standard
  366. Since
  367. \begin_inset Formula \( N(x,z) \)
  368. \end_inset
  369. splits into linear factors in
  370. \begin_inset Formula \( L((x^{1/r}))[z] \)
  371. \end_inset
  372. ,
  373. \begin_inset Formula \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \)
  374. \end_inset
  375. , there exists a partial fraction decomposition of
  376. \begin_inset Formula \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \)
  377. \end_inset
  378. in
  379. \begin_inset Formula \( \widehat{M}\ll x,z\gg \)
  380. \end_inset
  381. :
  382. \layout Standard
  383. \begin_inset Formula
  384. \[
  385. h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\]
  386. \end_inset
  387. with
  388. \begin_inset Formula \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \)
  389. \end_inset
  390. .
  391. \layout Standard
  392. Recall that we are looking for the coefficient of
  393. \begin_inset Formula \( z^{0} \)
  394. \end_inset
  395. in
  396. \begin_inset Formula \( h(x,z) \)
  397. \end_inset
  398. .
  399. We compute it separately for each summand.
  400. \layout Standard
  401. If
  402. \begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
  403. \end_inset
  404. with
  405. \begin_inset Formula \( a\in L\setminus \{0\} \)
  406. \end_inset
  407. ,
  408. \begin_inset Formula \( m>0 \)
  409. \end_inset
  410. , or
  411. \begin_inset Formula \( \zeta _{i}(x)=0 \)
  412. \end_inset
  413. , we have
  414. \layout Standard
  415. \begin_inset Formula
  416. \begin{eqnarray*}
  417. \frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\
  418. & = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\
  419. & = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}}
  420. \end{eqnarray*}
  421. \end_inset
  422. hence the coefficient of
  423. \begin_inset Formula \( z^{0} \)
  424. \end_inset
  425. in
  426. \begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
  427. \end_inset
  428. is
  429. \begin_inset Formula \( 0 \)
  430. \end_inset
  431. .
  432. \layout Standard
  433. \cursor 59
  434. If
  435. \begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
  436. \end_inset
  437. with
  438. \begin_inset Formula \( a\in L\setminus \{0\} \)
  439. \end_inset
  440. ,
  441. \begin_inset Formula \( m<0 \)
  442. \end_inset
  443. , we have
  444. \begin_inset Formula
  445. \[
  446. \frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\]
  447. \end_inset
  448. hence the coefficient of
  449. \begin_inset Formula \( z^{0} \)
  450. \end_inset
  451. in
  452. \begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
  453. \end_inset
  454. is
  455. \begin_inset Formula \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \)
  456. \end_inset
  457. .
  458. \layout Standard
  459. The case
  460. \begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
  461. \end_inset
  462. with
  463. \begin_inset Formula \( a\in L\setminus \{0\} \)
  464. \end_inset
  465. ,
  466. \begin_inset Formula \( m=0 \)
  467. \end_inset
  468. , cannot occur, because it would imply
  469. \begin_inset Formula \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \)
  470. \end_inset
  471. \layout Standard
  472. Altogether we have
  473. \begin_inset Formula
  474. \[
  475. g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
  476. \end_inset
  477. \layout Standard
  478. Since all
  479. \begin_inset Formula \( \zeta _{i}(x) \)
  480. \end_inset
  481. (in
  482. \begin_inset Formula \( L((x^{1/r})) \)
  483. \end_inset
  484. ) and all
  485. \begin_inset Formula \( P_{j}(x),P_{i,k}(x) \)
  486. \end_inset
  487. (in
  488. \begin_inset Formula \( \widehat{M}((x^{1/r})) \)
  489. \end_inset
  490. ) are algebraic over
  491. \begin_inset Formula \( K(x) \)
  492. \end_inset
  493. , the same holds also for
  494. \begin_inset Formula \( g(x^{2}) \)
  495. \end_inset
  496. .
  497. Hence
  498. \begin_inset Formula \( g(x) \)
  499. \end_inset
  500. is algebraic over
  501. \begin_inset Formula \( K(x^{1/2}) \)
  502. \end_inset
  503. , hence also over
  504. \begin_inset Formula \( K(x) \)
  505. \end_inset
  506. .
  507. After clearing denominators, we finally conclude that
  508. \begin_inset Formula \( g(x) \)
  509. \end_inset
  510. is algebraic over
  511. \begin_inset Formula \( R[x] \)
  512. \end_inset
  513. .
  514. \layout Bibliography
  515. [1] Bruno Haible: D-finite power series in several variables.
  516. \shape italic
  517. Diploma thesis, University of Karlsruhe, June 1989.
  518. \shape default
  519. Sections 2.
  520. 18 and 2.
  521. 20.
  522. \layout Bibliography
  523. [2] M.
  524. L.
  525. J.
  526. Hautus, D.
  527. A.
  528. Klarner: The diagonal of a double power series.
  529. \shape italic
  530. Duke Math.
  531. J.
  532. \shape default
  533. \series bold
  534. 38
  535. \series default
  536. (1971), 229-235.
  537. \layout Bibliography
  538. [3] C.
  539. Chevalley: Introduction to the theory of algebraic functions of one variable.
  540. \shape italic
  541. Mathematical Surveys VI.
  542. American Mathematical Society.
  543. \layout Bibliography
  544. [4] Jean-Pierre Serre: Corps locaux.
  545. \shape italic
  546. Hermann.
  547. Paris
  548. \shape default
  549. 1968.
  550. \layout Bibliography
  551. [5] Martin Eichler: Introduction to the theory of algebraic numbers and
  552. functions.
  553. \shape italic
  554. Academic Press.
  555. New York, London
  556. \shape default
  557. 1966.