31 lines
1.1 KiB

25 years ago
  1. - polynomial division and gcd
  2. - polynomial documentation
  3. 7. add combinatorial, linear algebra, factorization, polynomial functions
  4. as in SAC-2.
  5. 7. finite fields, e.g.
  6. - gf256_log_2, gf256_antilog_2, gf256_power_of_2, gf256_add, gf256_minus,
  7. gf256_subtract, gf256_mul, gf256_inv, gf256_div, gf256_product, gf256_exp,
  8. gf256_term, gfmul, gfadd, gfinv, gfexp.
  9. more polynomial operations:
  10. x(), power, >>, <<, division, scalmult, content, primitivepart,
  11. gcd, xgcd, no_of_real_roots, factorization.
  12. modular polynomials: powmod etc.
  13. 7. chinese remainder algorithm, maybe Hensel-lifting as in Magnum.
  14. 8. factor and primality testing for small integers
  15. 8. primality test in Z:
  16. + polynomials cl_MUP_MI, cl_MUP_I
  17. use integer FFT for multiplication in cl_UP_MI and cl_MUP_MI
  18. + - Pollard rho
  19. + - complex values of j()
  20. - Hilbert polynomial for j() 7.6.1
  21. + roots of polynomials mod N 1.6.1
  22. + - elliptic curves, Jacobi representation
  23. - m.P on elliptic curve
  24. + Atkin's algorithm
  25. 10. factoring in Z:
  26. - small prime table,
  27. - Pollard rho,
  28. - multiple polynomial quadratic sieve
  29. Document the timing class