You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

176 lines
4.1 KiB

25 years ago
  1. %% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997
  2. %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
  3. %% Don't edit this file unless you are sure what you are doing.
  4. \documentclass[12pt,a4paper,oneside,onecolumn]{article}
  5. \usepackage[]{fontenc}
  6. \usepackage[latin1]{inputenc}
  7. \usepackage[dvips]{epsfig}
  8. %%
  9. %% BEGIN The lyx specific LaTeX commands.
  10. %%
  11. \makeatletter
  12. \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
  13. \newcommand{\lyxtitle}[1] {\thispagestyle{empty}
  14. \global\@topnum\z@
  15. \section*{\LARGE \centering \sffamily \bfseries \protect#1 }
  16. }
  17. \newcommand{\lyxline}[1]{
  18. {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
  19. }
  20. \newenvironment{lyxsectionbibliography}
  21. {
  22. \section*{\refname}
  23. \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
  24. \begin{list}{}{
  25. \itemindent-\leftmargin
  26. \labelsep 0pt
  27. \renewcommand{\makelabel}{}
  28. }
  29. }
  30. {\end{list}}
  31. \newenvironment{lyxchapterbibliography}
  32. {
  33. \chapter*{\bibname}
  34. \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
  35. \begin{list}{}{
  36. \itemindent-\leftmargin
  37. \labelsep 0pt
  38. \renewcommand{\makelabel}{}
  39. }
  40. }
  41. {\end{list}}
  42. \def\lxq{"}
  43. \newenvironment{lyxcode}
  44. {\list{}{
  45. \rightmargin\leftmargin
  46. \raggedright
  47. \itemsep 0pt
  48. \parsep 0pt
  49. \ttfamily
  50. }%
  51. \item[]
  52. }
  53. {\endlist}
  54. \newcommand{\lyxlabel}[1]{#1 \hfill}
  55. \newenvironment{lyxlist}[1]
  56. {\begin{list}{}
  57. {\settowidth{\labelwidth}{#1}
  58. \setlength{\leftmargin}{\labelwidth}
  59. \addtolength{\leftmargin}{\labelsep}
  60. \renewcommand{\makelabel}{\lyxlabel}}}
  61. {\end{list}}
  62. \newcommand{\lyxletterstyle}{
  63. \setlength\parskip{0.7em}
  64. \setlength\parindent{0pt}
  65. }
  66. \newcommand{\lyxaddress}[1]{
  67. \par {\raggedright #1
  68. \vspace{1.4em}
  69. \noindent\par}
  70. }
  71. \newcommand{\lyxrightaddress}[1]{
  72. \par {\raggedleft \begin{tabular}{l}\ignorespaces
  73. #1
  74. \end{tabular}
  75. \vspace{1.4em}
  76. \par}
  77. }
  78. \newcommand{\lyxformula}[1]{
  79. \begin{eqnarray*}
  80. #1
  81. \end{eqnarray*}
  82. }
  83. \newcommand{\lyxnumberedformula}[1]{
  84. \begin{eqnarray}
  85. #1
  86. \end{eqnarray}
  87. }
  88. \makeatother
  89. %%
  90. %% END The lyx specific LaTeX commands.
  91. %%
  92. \pagestyle{plain}
  93. \setcounter{secnumdepth}{3}
  94. \setcounter{tocdepth}{3}
  95. \begin{document}
  96. The Hermite polynomials \( H_{n}(x) \) are defined through
  97. \[
  98. H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
  99. \begin{description}
  100. \item [Theorem:]~
  101. \end{description}
  102. \( H_{n}(x) \) satisfies the recurrence relation
  103. \[
  104. H_{0}(x)=1\]
  105. \[
  106. H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
  107. for \( n\geq 0 \) and the differential equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all \( n\geq 0 \).
  108. \begin{description}
  109. \item [Proof:]~
  110. \end{description}
  111. Let \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials.
  112. Then, because the Taylor series development theorem holds in formal
  113. power series rings (see [1], section 2.16), we can simplify
  114. \begin{eqnarray*}
  115. F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
  116. & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
  117. & = & e^{2xz-z^{2}}
  118. \end{eqnarray*}
  119. It follows
  120. that \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence.
  121. Starting from this equation, we compute a linear relation for the
  122. partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
  123. \[
  124. F=1\cdot F\]
  125. \[
  126. \partial _{x}F=2z\cdot F\]
  127. \[
  128. \partial _{x}^{2}F=4z^{2}\cdot F\]
  129. \[
  130. \Delta _{z}F=(2xz-2z^{2})\cdot F\]
  131. \[
  132. \partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
  133. \[
  134. \Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
  135. Solve
  136. a homogeneous \( 5\times 6 \) system of linear equations over \( Q(x) \) to get
  137. \[
  138. (-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
  139. This is
  140. equivalent to the claimed equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \).
  141. \begin{lyxsectionbibliography}
  142. \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
  143. thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
  144. 2.22.
  145. \end{lyxsectionbibliography}
  146. \end{document}