You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3722 lines
126 KiB

25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
25 years ago
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename cln.info
  4. @settitle CLN, a Class Library for Numbers
  5. @c @setchapternewpage off
  6. @c For `info' only.
  7. @paragraphindent 0
  8. @c For TeX only.
  9. @iftex
  10. @c I hate putting "@noindent" in front of every paragraph.
  11. @parindent=0pt
  12. @end iftex
  13. @c %**end of header
  14. @c My own index.
  15. @defindex my
  16. @c Don't need the other types of indices.
  17. @synindex cp my
  18. @synindex fn my
  19. @synindex vr my
  20. @synindex ky my
  21. @synindex pg my
  22. @synindex tp my
  23. @c For `info' only.
  24. @ifinfo
  25. This file documents @sc{cln}, a Class Library for Numbers.
  26. Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
  27. Richard Kreckel, @code{<kreckel@@ginac.de>}.
  28. Copyright (C) Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000.
  29. Permission is granted to make and distribute verbatim copies of
  30. this manual provided the copyright notice and this permission notice
  31. are preserved on all copies.
  32. @ignore
  33. Permission is granted to process this file through TeX and print the
  34. results, provided the printed document carries copying permission
  35. notice identical to this one except for the removal of this paragraph
  36. (this paragraph not being relevant to the printed manual).
  37. @end ignore
  38. Permission is granted to copy and distribute modified versions of this
  39. manual under the conditions for verbatim copying, provided that the entire
  40. resulting derived work is distributed under the terms of a permission
  41. notice identical to this one.
  42. Permission is granted to copy and distribute translations of this manual
  43. into another language, under the above conditions for modified versions,
  44. except that this permission notice may be stated in a translation approved
  45. by the author.
  46. @end ifinfo
  47. @c For TeX only.
  48. @c prevent ugly black rectangles on overfull hbox lines:
  49. @finalout
  50. @titlepage
  51. @title CLN, a Class Library for Numbers
  52. @author by Bruno Haible
  53. @page
  54. @vskip 0pt plus 1filll
  55. Copyright @copyright{} Bruno Haible 1995, 1996, 1997, 1998, 1999, 2000.
  56. @sp 2
  57. Published by Bruno Haible, @code{<haible@@clisp.cons.org>} and
  58. Richard Kreckel, @code{<kreckel@@ginac.de>}.
  59. Permission is granted to make and distribute verbatim copies of
  60. this manual provided the copyright notice and this permission notice
  61. are preserved on all copies.
  62. Permission is granted to copy and distribute modified versions of this
  63. manual under the conditions for verbatim copying, provided that the entire
  64. resulting derived work is distributed under the terms of a permission
  65. notice identical to this one.
  66. Permission is granted to copy and distribute translations of this manual
  67. into another language, under the above conditions for modified versions,
  68. except that this permission notice may be stated in a translation approved
  69. by the author.
  70. @end titlepage
  71. @page
  72. @node Top, Introduction, (dir), (dir)
  73. @c @menu
  74. @c * Introduction:: Introduction
  75. @c @end menu
  76. @node Introduction, Top, Top, Top
  77. @comment node-name, next, previous, up
  78. @chapter Introduction
  79. @noindent
  80. CLN is a library for computations with all kinds of numbers.
  81. It has a rich set of number classes:
  82. @itemize @bullet
  83. @item
  84. Integers (with unlimited precision),
  85. @item
  86. Rational numbers,
  87. @item
  88. Floating-point numbers:
  89. @itemize @minus
  90. @item
  91. Short float,
  92. @item
  93. Single float,
  94. @item
  95. Double float,
  96. @item
  97. Long float (with unlimited precision),
  98. @end itemize
  99. @item
  100. Complex numbers,
  101. @item
  102. Modular integers (integers modulo a fixed integer),
  103. @item
  104. Univariate polynomials.
  105. @end itemize
  106. @noindent
  107. The subtypes of the complex numbers among these are exactly the
  108. types of numbers known to the Common Lisp language. Therefore
  109. @code{CLN} can be used for Common Lisp implementations, giving
  110. @samp{CLN} another meaning: it becomes an abbreviation of
  111. ``Common Lisp Numbers''.
  112. @noindent
  113. The CLN package implements
  114. @itemize @bullet
  115. @item
  116. Elementary functions (@code{+}, @code{-}, @code{*}, @code{/}, @code{sqrt},
  117. comparisons, @dots{}),
  118. @item
  119. Logical functions (logical @code{and}, @code{or}, @code{not}, @dots{}),
  120. @item
  121. Transcendental functions (exponential, logarithmic, trigonometric, hyperbolic
  122. functions and their inverse functions).
  123. @end itemize
  124. @noindent
  125. CLN is a C++ library. Using C++ as an implementation language provides
  126. @itemize @bullet
  127. @item
  128. efficiency: it compiles to machine code,
  129. @item
  130. type safety: the C++ compiler knows about the number types and complains
  131. if, for example, you try to assign a float to an integer variable.
  132. @item
  133. algebraic syntax: You can use the @code{+}, @code{-}, @code{*}, @code{=},
  134. @code{==}, @dots{} operators as in C or C++.
  135. @end itemize
  136. @noindent
  137. CLN is memory efficient:
  138. @itemize @bullet
  139. @item
  140. Small integers and short floats are immediate, not heap allocated.
  141. @item
  142. Heap-allocated memory is reclaimed through an automatic, non-interruptive
  143. garbage collection.
  144. @end itemize
  145. @noindent
  146. CLN is speed efficient:
  147. @itemize @bullet
  148. @item
  149. The kernel of CLN has been written in assembly language for some CPUs
  150. (@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
  151. @item
  152. @cindex GMP
  153. On all CPUs, CLN may be configured to use the superefficient low-level
  154. routines from GNU GMP version 3.
  155. @item
  156. It uses Karatsuba multiplication, which is significantly faster
  157. for large numbers than the standard multiplication algorithm.
  158. @item
  159. For very large numbers (more than 12000 decimal digits), it uses
  160. @iftex
  161. Sch{@"o}nhage-Strassen
  162. @cindex Sch{@"o}nhage-Strassen multiplication
  163. @end iftex
  164. @ifinfo
  165. Sch�nhage-Strassen
  166. @cindex Sch�nhage-Strassen multiplication
  167. @end ifinfo
  168. multiplication, which is an asymptotically optimal multiplication
  169. algorithm, for multiplication, division and radix conversion.
  170. @end itemize
  171. @noindent
  172. CLN aims at being easily integrated into larger software packages:
  173. @itemize @bullet
  174. @item
  175. The garbage collection imposes no burden on the main application.
  176. @item
  177. The library provides hooks for memory allocation and exceptions.
  178. @end itemize
  179. @chapter Installation
  180. This section describes how to install the CLN package on your system.
  181. @section Prerequisites
  182. @subsection C++ compiler
  183. To build CLN, you need a C++ compiler.
  184. Actually, you need GNU @code{g++ 2.7.0} or newer.
  185. On HPPA, you need GNU @code{g++ 2.8.0} or newer.
  186. I recommend GNU @code{g++ 2.95} or newer.
  187. The following C++ features are used:
  188. classes, member functions,
  189. overloading of functions and operators,
  190. constructors and destructors, inline, const,
  191. multiple inheritance, templates.
  192. The following C++ features are not used:
  193. @code{new}, @code{delete}, virtual inheritance,
  194. exceptions.
  195. CLN relies on semi-automatic ordering of initializations
  196. of static and global variables, a feature which I could
  197. implement for GNU g++ only.
  198. @ignore
  199. @comment cl_modules.h requires g++
  200. Therefore nearly any C++ compiler will do.
  201. The following C++ compilers are known to compile CLN:
  202. @itemize @minus
  203. @item
  204. GNU @code{g++ 2.7.0}, @code{g++ 2.7.2}
  205. @item
  206. SGI @code{CC 4}
  207. @end itemize
  208. The following C++ compilers are known to be unusable for CLN:
  209. @itemize @minus
  210. @item
  211. On SunOS 4, @code{CC 2.1}, because it doesn't grok @code{//} comments
  212. in lines containing @code{#if} or @code{#elif} preprocessor commands.
  213. @item
  214. On AIX 3.2.5, @code{xlC}, because it doesn't grok the template syntax
  215. in @code{cl_SV.h} and @code{cl_GV.h}, because it forces most class types
  216. to have default constructors, and because it probably miscompiles the
  217. integer multiplication routines.
  218. @item
  219. On AIX 4.1.4.0, @code{xlC}, because when optimizing, it sometimes converts
  220. @code{short}s to @code{int}s by zero-extend.
  221. @item
  222. GNU @code{g++ 2.5.8}
  223. @item
  224. On HPPA, GNU @code{g++ 2.7.x}, because the semi-automatic ordering of
  225. initializations will not work.
  226. @end itemize
  227. @end ignore
  228. @subsection Make utility
  229. @cindex @code{make}
  230. To build CLN, you also need to have GNU @code{make} installed.
  231. @subsection Sed utility
  232. @cindex @code{sed}
  233. To build CLN on HP-UX, you also need to have GNU @code{sed} installed.
  234. This is because the libtool script, which creates the CLN library, relies
  235. on @code{sed}, and the vendor's @code{sed} utility on these systems is too
  236. limited.
  237. @section Building the library
  238. As with any autoconfiguring GNU software, installation is as easy as this:
  239. @example
  240. $ ./configure
  241. $ make
  242. $ make check
  243. @end example
  244. If on your system, @samp{make} is not GNU @code{make}, you have to use
  245. @samp{gmake} instead of @samp{make} above.
  246. The @code{configure} command checks out some features of your system and
  247. C++ compiler and builds the @code{Makefile}s. The @code{make} command
  248. builds the library. This step may take 4 hours on an average workstation.
  249. The @code{make check} runs some test to check that no important subroutine
  250. has been miscompiled.
  251. The @code{configure} command accepts options. To get a summary of them, try
  252. @example
  253. $ ./configure --help
  254. @end example
  255. Some of the options are explained in detail in the @samp{INSTALL.generic} file.
  256. You can specify the C compiler, the C++ compiler and their options through
  257. the following environment variables when running @code{configure}:
  258. @table @code
  259. @item CC
  260. Specifies the C compiler.
  261. @item CFLAGS
  262. Flags to be given to the C compiler when compiling programs (not when linking).
  263. @item CXX
  264. Specifies the C++ compiler.
  265. @item CXXFLAGS
  266. Flags to be given to the C++ compiler when compiling programs (not when linking).
  267. @end table
  268. Examples:
  269. @example
  270. $ CC="gcc" CFLAGS="-O" CXX="g++" CXXFLAGS="-O" ./configure
  271. $ CC="gcc -V 2.7.2" CFLAGS="-O -g" \
  272. CXX="g++ -V 2.7.2" CXXFLAGS="-O -g" ./configure
  273. $ CC="gcc -V 2.8.1" CFLAGS="-O -fno-exceptions" \
  274. CXX="g++ -V 2.8.1" CXXFLAGS="-O -fno-exceptions" ./configure
  275. $ CC="gcc -V egcs-2.91.60" CFLAGS="-O2 -fno-exceptions" \
  276. CXX="g++ -V egcs-2.91.60" CFLAGS="-O2 -fno-exceptions" ./configure
  277. @end example
  278. @ignore
  279. @comment cl_modules.h requires g++
  280. You should not mix GNU and non-GNU compilers. So, if @code{CXX} is a non-GNU
  281. compiler, @code{CC} should be set to a non-GNU compiler as well. Examples:
  282. @example
  283. $ CC="cc" CFLAGS="-O" CXX="CC" CXXFLAGS="-O" ./configure
  284. $ CC="gcc -V 2.7.0" CFLAGS="-g" CXX="g++ -V 2.7.0" CXXFLAGS="-g" ./configure
  285. @end example
  286. On SGI Irix 5, if you wish not to use @code{g++}:
  287. @example
  288. $ CC="cc" CFLAGS="-O" CXX="CC" CXXFLAGS="-O -Olimit 16000" ./configure
  289. @end example
  290. On SGI Irix 6, if you wish not to use @code{g++}:
  291. @example
  292. $ CC="cc -32" CFLAGS="-O" CXX="CC -32" CXXFLAGS="-O -Olimit 34000" \
  293. ./configure --without-gmp
  294. $ CC="cc -n32" CFLAGS="-O" CXX="CC -n32" CXXFLAGS="-O \
  295. -OPT:const_copy_limit=32400 -OPT:global_limit=32400 -OPT:fprop_limit=4000" \
  296. ./configure --without-gmp
  297. @end example
  298. @end ignore
  299. Note that for these environment variables to take effect, you have to set
  300. them (assuming a Bourne-compatible shell) on the same line as the
  301. @code{configure} command. If you made the settings in earlier shell
  302. commands, you have to @code{export} the environment variables before
  303. calling @code{configure}. In a @code{csh} shell, you have to use the
  304. @samp{setenv} command for setting each of the environment variables.
  305. Currently CLN works only with the GNU @code{g++} compiler, and only in
  306. optimizing mode. So you should specify at least @code{-O} in the CXXFLAGS,
  307. or no CXXFLAGS at all. (If CXXFLAGS is not set, CLN will use @code{-O}.)
  308. On Linux, @code{g++} needs 15 MB to compile the tests. So you should better
  309. have 17 MB swap space and 1 MB room in $TMPDIR.
  310. If you use @code{g++} version 2.7.x, don't add @samp{-O2} to the CXXFLAGS,
  311. because @samp{g++ -O} generates better code for CLN than @samp{g++ -O2}.
  312. If you use @code{g++} version 2.8.x or egcs-2.91.x (a.k.a. egcs-1.1) or
  313. gcc-2.95.x, I recommend adding @samp{-fno-exceptions} to the CXXFLAGS.
  314. This will likely generate better code.
  315. If you use @code{g++} version egcs-2.91.x (egcs-1.1) or gcc-2.95.x on Sparc,
  316. add either @samp{-O}, @samp{-O1} or @samp{-O2 -fno-schedule-insns} to the
  317. CXXFLAGS. With full @samp{-O2}, @code{g++} miscompiles the division routines.
  318. Also, if you have @code{g++} version egcs-1.1.1 or older on Sparc, you must
  319. specify @samp{--disable-shared} because @code{g++} would miscompile parts of
  320. the library.
  321. By default, both a shared and a static library are built. You can build
  322. CLN as a static (or shared) library only, by calling @code{configure} with
  323. the option @samp{--disable-shared} (or @samp{--disable-static}). While
  324. shared libraries are usually more convenient to use, they may not work
  325. on all architectures. Try disabling them if you run into linker
  326. problems. Also, they are generally somewhat slower than static
  327. libraries so runtime-critical applications should be linked statically.
  328. @subsection Using the GNU MP Library
  329. @cindex GMP
  330. Starting with version 1.1, CLN may be configured to make use of a
  331. preinstalled @code{gmp} library. Please make sure that you have at
  332. least @code{gmp} version 3.0 installed since earlier versions are
  333. unsupported and likely not to work. Enabling this feature by calling
  334. @code{configure} with the option @samp{--with-gmp} is known to be quite
  335. a boost for CLN's performance.
  336. If you have installed the @code{gmp} library and its header file in
  337. some place where your compiler cannot find it by default, you must help
  338. @code{configure} by setting @code{CPPFLAGS} and @code{LDFLAGS}. Here is
  339. an example:
  340. @example
  341. $ CC="gcc" CFLAGS="-O2" CXX="g++" CXXFLAGS="-O2 -fno-exceptions" \
  342. CPPFLAGS="-I/opt/gmp/include" LDFLAGS="-L/opt/gmp/lib" ./configure --with-gmp
  343. @end example
  344. @section Installing the library
  345. @cindex installation
  346. As with any autoconfiguring GNU software, installation is as easy as this:
  347. @example
  348. $ make install
  349. @end example
  350. The @samp{make install} command installs the library and the include files
  351. into public places (@file{/usr/local/lib/} and @file{/usr/local/include/},
  352. if you haven't specified a @code{--prefix} option to @code{configure}).
  353. This step may require superuser privileges.
  354. If you have already built the library and wish to install it, but didn't
  355. specify @code{--prefix=@dots{}} at configure time, just re-run
  356. @code{configure}, giving it the same options as the first time, plus
  357. the @code{--prefix=@dots{}} option.
  358. @section Cleaning up
  359. You can remove system-dependent files generated by @code{make} through
  360. @example
  361. $ make clean
  362. @end example
  363. You can remove all files generated by @code{make}, thus reverting to a
  364. virgin distribution of CLN, through
  365. @example
  366. $ make distclean
  367. @end example
  368. @chapter Ordinary number types
  369. CLN implements the following class hierarchy:
  370. @example
  371. Number
  372. cl_number
  373. <cl_number.h>
  374. |
  375. |
  376. Real or complex number
  377. cl_N
  378. <cl_complex.h>
  379. |
  380. |
  381. Real number
  382. cl_R
  383. <cl_real.h>
  384. |
  385. +-------------------+-------------------+
  386. | |
  387. Rational number Floating-point number
  388. cl_RA cl_F
  389. <cl_rational.h> <cl_float.h>
  390. | |
  391. | +-------------+-------------+-------------+
  392. Integer | | | |
  393. cl_I Short-Float Single-Float Double-Float Long-Float
  394. <cl_integer.h> cl_SF cl_FF cl_DF cl_LF
  395. <cl_sfloat.h> <cl_ffloat.h> <cl_dfloat.h> <cl_lfloat.h>
  396. @end example
  397. @cindex @code{cl_number}
  398. @cindex abstract class
  399. The base class @code{cl_number} is an abstract base class.
  400. It is not useful to declare a variable of this type except if you want
  401. to completely disable compile-time type checking and use run-time type
  402. checking instead.
  403. @cindex @code{cl_N}
  404. @cindex real number
  405. @cindex complex number
  406. The class @code{cl_N} comprises real and complex numbers. There is
  407. no special class for complex numbers since complex numbers with imaginary
  408. part @code{0} are automatically converted to real numbers.
  409. @cindex @code{cl_R}
  410. The class @code{cl_R} comprises real numbers of different kinds. It is an
  411. abstract class.
  412. @cindex @code{cl_RA}
  413. @cindex rational number
  414. @cindex integer
  415. The class @code{cl_RA} comprises exact real numbers: rational numbers, including
  416. integers. There is no special class for non-integral rational numbers
  417. since rational numbers with denominator @code{1} are automatically converted
  418. to integers.
  419. @cindex @code{cl_F}
  420. The class @code{cl_F} implements floating-point approximations to real numbers.
  421. It is an abstract class.
  422. @section Exact numbers
  423. @cindex exact number
  424. Some numbers are represented as exact numbers: there is no loss of information
  425. when such a number is converted from its mathematical value to its internal
  426. representation. On exact numbers, the elementary operations (@code{+},
  427. @code{-}, @code{*}, @code{/}, comparisons, @dots{}) compute the completely
  428. correct result.
  429. In CLN, the exact numbers are:
  430. @itemize @bullet
  431. @item
  432. rational numbers (including integers),
  433. @item
  434. complex numbers whose real and imaginary parts are both rational numbers.
  435. @end itemize
  436. Rational numbers are always normalized to the form
  437. @code{@var{numerator}/@var{denominator}} where the numerator and denominator
  438. are coprime integers and the denominator is positive. If the resulting
  439. denominator is @code{1}, the rational number is converted to an integer.
  440. Small integers (typically in the range @code{-2^30}@dots{}@code{2^30-1},
  441. for 32-bit machines) are especially efficient, because they consume no heap
  442. allocation. Otherwise the distinction between these immediate integers
  443. (called ``fixnums'') and heap allocated integers (called ``bignums'')
  444. is completely transparent.
  445. @section Floating-point numbers
  446. @cindex floating-point number
  447. Not all real numbers can be represented exactly. (There is an easy mathematical
  448. proof for this: Only a countable set of numbers can be stored exactly in
  449. a computer, even if one assumes that it has unlimited storage. But there
  450. are uncountably many real numbers.) So some approximation is needed.
  451. CLN implements ordinary floating-point numbers, with mantissa and exponent.
  452. @cindex rounding error
  453. The elementary operations (@code{+}, @code{-}, @code{*}, @code{/}, @dots{})
  454. only return approximate results. For example, the value of the expression
  455. @code{(cl_F) 0.3 + (cl_F) 0.4} prints as @samp{0.70000005}, not as
  456. @samp{0.7}. Rounding errors like this one are inevitable when computing
  457. with floating-point numbers.
  458. Nevertheless, CLN rounds the floating-point results of the operations @code{+},
  459. @code{-}, @code{*}, @code{/}, @code{sqrt} according to the ``round-to-even''
  460. rule: It first computes the exact mathematical result and then returns the
  461. floating-point number which is nearest to this. If two floating-point numbers
  462. are equally distant from the ideal result, the one with a @code{0} in its least
  463. significant mantissa bit is chosen.
  464. Similarly, testing floating point numbers for equality @samp{x == y}
  465. is gambling with random errors. Better check for @samp{abs(x - y) < epsilon}
  466. for some well-chosen @code{epsilon}.
  467. Floating point numbers come in four flavors:
  468. @itemize @bullet
  469. @item
  470. @cindex @code{cl_SF}
  471. Short floats, type @code{cl_SF}.
  472. They have 1 sign bit, 8 exponent bits (including the exponent's sign),
  473. and 17 mantissa bits (including the ``hidden'' bit).
  474. They don't consume heap allocation.
  475. @item
  476. @cindex @code{cl_FF}
  477. Single floats, type @code{cl_FF}.
  478. They have 1 sign bit, 8 exponent bits (including the exponent's sign),
  479. and 24 mantissa bits (including the ``hidden'' bit).
  480. In CLN, they are represented as IEEE single-precision floating point numbers.
  481. This corresponds closely to the C/C++ type @samp{float}.
  482. @item
  483. @cindex @code{cl_DF}
  484. Double floats, type @code{cl_DF}.
  485. They have 1 sign bit, 11 exponent bits (including the exponent's sign),
  486. and 53 mantissa bits (including the ``hidden'' bit).
  487. In CLN, they are represented as IEEE double-precision floating point numbers.
  488. This corresponds closely to the C/C++ type @samp{double}.
  489. @item
  490. @cindex @code{cl_LF}
  491. Long floats, type @code{cl_LF}.
  492. They have 1 sign bit, 32 exponent bits (including the exponent's sign),
  493. and n mantissa bits (including the ``hidden'' bit), where n >= 64.
  494. The precision of a long float is unlimited, but once created, a long float
  495. has a fixed precision. (No ``lazy recomputation''.)
  496. @end itemize
  497. Of course, computations with long floats are more expensive than those
  498. with smaller floating-point formats.
  499. CLN does not implement features like NaNs, denormalized numbers and
  500. gradual underflow. If the exponent range of some floating-point type
  501. is too limited for your application, choose another floating-point type
  502. with larger exponent range.
  503. @cindex @code{cl_F}
  504. As a user of CLN, you can forget about the differences between the
  505. four floating-point types and just declare all your floating-point
  506. variables as being of type @code{cl_F}. This has the advantage that
  507. when you change the precision of some computation (say, from @code{cl_DF}
  508. to @code{cl_LF}), you don't have to change the code, only the precision
  509. of the initial values. Also, many transcendental functions have been
  510. declared as returning a @code{cl_F} when the argument is a @code{cl_F},
  511. but such declarations are missing for the types @code{cl_SF}, @code{cl_FF},
  512. @code{cl_DF}, @code{cl_LF}. (Such declarations would be wrong if
  513. the floating point contagion rule happened to change in the future.)
  514. @section Complex numbers
  515. @cindex complex number
  516. Complex numbers, as implemented by the class @code{cl_N}, have a real
  517. part and an imaginary part, both real numbers. A complex number whose
  518. imaginary part is the exact number @code{0} is automatically converted
  519. to a real number.
  520. Complex numbers can arise from real numbers alone, for example
  521. through application of @code{sqrt} or transcendental functions.
  522. @section Conversions
  523. @cindex conversion
  524. Conversions from any class to any its superclasses (``base classes'' in
  525. C++ terminology) is done automatically.
  526. Conversions from the C built-in types @samp{long} and @samp{unsigned long}
  527. are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
  528. @code{cl_N} and @code{cl_number}.
  529. Conversions from the C built-in types @samp{int} and @samp{unsigned int}
  530. are provided for the classes @code{cl_I}, @code{cl_RA}, @code{cl_R},
  531. @code{cl_N} and @code{cl_number}. However, these conversions emphasize
  532. efficiency. Their range is therefore limited:
  533. @itemize @minus
  534. @item
  535. The conversion from @samp{int} works only if the argument is < 2^29 and > -2^29.
  536. @item
  537. The conversion from @samp{unsigned int} works only if the argument is < 2^29.
  538. @end itemize
  539. In a declaration like @samp{cl_I x = 10;} the C++ compiler is able to
  540. do the conversion of @code{10} from @samp{int} to @samp{cl_I} at compile time
  541. already. On the other hand, code like @samp{cl_I x = 1000000000;} is
  542. in error.
  543. So, if you want to be sure that an @samp{int} whose magnitude is not guaranteed
  544. to be < 2^29 is correctly converted to a @samp{cl_I}, first convert it to a
  545. @samp{long}. Similarly, if a large @samp{unsigned int} is to be converted to a
  546. @samp{cl_I}, first convert it to an @samp{unsigned long}.
  547. Conversions from the C built-in type @samp{float} are provided for the classes
  548. @code{cl_FF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.
  549. Conversions from the C built-in type @samp{double} are provided for the classes
  550. @code{cl_DF}, @code{cl_F}, @code{cl_R}, @code{cl_N} and @code{cl_number}.
  551. Conversions from @samp{const char *} are provided for the classes
  552. @code{cl_I}, @code{cl_RA},
  553. @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F},
  554. @code{cl_R}, @code{cl_N}.
  555. The easiest way to specify a value which is outside of the range of the
  556. C++ built-in types is therefore to specify it as a string, like this:
  557. @cindex Rubik's cube
  558. @example
  559. cl_I order_of_rubiks_cube_group = "43252003274489856000";
  560. @end example
  561. Note that this conversion is done at runtime, not at compile-time.
  562. Conversions from @code{cl_I} to the C built-in types @samp{int},
  563. @samp{unsigned int}, @samp{long}, @samp{unsigned long} are provided through
  564. the functions
  565. @table @code
  566. @item int cl_I_to_int (const cl_I& x)
  567. @cindex @code{cl_I_to_int ()}
  568. @itemx unsigned int cl_I_to_uint (const cl_I& x)
  569. @cindex @code{cl_I_to_uint ()}
  570. @itemx long cl_I_to_long (const cl_I& x)
  571. @cindex @code{cl_I_to_long ()}
  572. @itemx unsigned long cl_I_to_ulong (const cl_I& x)
  573. @cindex @code{cl_I_to_ulong ()}
  574. Returns @code{x} as element of the C type @var{ctype}. If @code{x} is not
  575. representable in the range of @var{ctype}, a runtime error occurs.
  576. @end table
  577. Conversions from the classes @code{cl_I}, @code{cl_RA},
  578. @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}, @code{cl_F} and
  579. @code{cl_R}
  580. to the C built-in types @samp{float} and @samp{double} are provided through
  581. the functions
  582. @table @code
  583. @item float cl_float_approx (const @var{type}& x)
  584. @cindex @code{cl_float_approx ()}
  585. @itemx double cl_double_approx (const @var{type}& x)
  586. @cindex @code{cl_double_approx ()}
  587. Returns an approximation of @code{x} of C type @var{ctype}.
  588. If @code{abs(x)} is too close to 0 (underflow), 0 is returned.
  589. If @code{abs(x)} is too large (overflow), an IEEE infinity is returned.
  590. @end table
  591. Conversions from any class to any of its subclasses (``derived classes'' in
  592. C++ terminology) are not provided. Instead, you can assert and check
  593. that a value belongs to a certain subclass, and return it as element of that
  594. class, using the @samp{As} and @samp{The} macros.
  595. @cindex @code{As()()}
  596. @code{As(@var{type})(@var{value})} checks that @var{value} belongs to
  597. @var{type} and returns it as such.
  598. @cindex @code{The()()}
  599. @code{The(@var{type})(@var{value})} assumes that @var{value} belongs to
  600. @var{type} and returns it as such. It is your responsibility to ensure
  601. that this assumption is valid.
  602. Example:
  603. @example
  604. @group
  605. cl_I x = @dots{};
  606. if (!(x >= 0)) abort();
  607. cl_I ten_x = The(cl_I)(expt(10,x)); // If x >= 0, 10^x is an integer.
  608. // In general, it would be a rational number.
  609. @end group
  610. @end example
  611. @chapter Functions on numbers
  612. Each of the number classes declares its mathematical operations in the
  613. corresponding include file. For example, if your code operates with
  614. objects of type @code{cl_I}, it should @code{#include <cl_integer.h>}.
  615. @section Constructing numbers
  616. Here is how to create number objects ``from nothing''.
  617. @subsection Constructing integers
  618. @code{cl_I} objects are most easily constructed from C integers and from
  619. strings. See @ref{Conversions}.
  620. @subsection Constructing rational numbers
  621. @code{cl_RA} objects can be constructed from strings. The syntax
  622. for rational numbers is described in @ref{Internal and printed representation}.
  623. Another standard way to produce a rational number is through application
  624. of @samp{operator /} or @samp{recip} on integers.
  625. @subsection Constructing floating-point numbers
  626. @code{cl_F} objects with low precision are most easily constructed from
  627. C @samp{float} and @samp{double}. See @ref{Conversions}.
  628. To construct a @code{cl_F} with high precision, you can use the conversion
  629. from @samp{const char *}, but you have to specify the desired precision
  630. within the string. (See @ref{Internal and printed representation}.)
  631. Example:
  632. @example
  633. cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40";
  634. @end example
  635. will set @samp{e} to the given value, with a precision of 40 decimal digits.
  636. The programmatic way to construct a @code{cl_F} with high precision is
  637. through the @code{cl_float} conversion function, see
  638. @ref{Conversion to floating-point numbers}. For example, to compute
  639. @code{e} to 40 decimal places, first construct 1.0 to 40 decimal places
  640. and then apply the exponential function:
  641. @example
  642. cl_float_format_t precision = cl_float_format(40);
  643. cl_F e = exp(cl_float(1,precision));
  644. @end example
  645. @subsection Constructing complex numbers
  646. Non-real @code{cl_N} objects are normally constructed through the function
  647. @example
  648. cl_N complex (const cl_R& realpart, const cl_R& imagpart)
  649. @end example
  650. See @ref{Elementary complex functions}.
  651. @section Elementary functions
  652. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  653. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  654. defines the following operations:
  655. @table @code
  656. @item @var{type} operator + (const @var{type}&, const @var{type}&)
  657. @cindex @code{operator + ()}
  658. Addition.
  659. @item @var{type} operator - (const @var{type}&, const @var{type}&)
  660. @cindex @code{operator - ()}
  661. Subtraction.
  662. @item @var{type} operator - (const @var{type}&)
  663. Returns the negative of the argument.
  664. @item @var{type} plus1 (const @var{type}& x)
  665. @cindex @code{plus1 ()}
  666. Returns @code{x + 1}.
  667. @item @var{type} minus1 (const @var{type}& x)
  668. @cindex @code{minus1 ()}
  669. Returns @code{x - 1}.
  670. @item @var{type} operator * (const @var{type}&, const @var{type}&)
  671. @cindex @code{operator * ()}
  672. Multiplication.
  673. @item @var{type} square (const @var{type}& x)
  674. @cindex @code{square ()}
  675. Returns @code{x * x}.
  676. @end table
  677. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
  678. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  679. defines the following operations:
  680. @table @code
  681. @item @var{type} operator / (const @var{type}&, const @var{type}&)
  682. @cindex @code{operator / ()}
  683. Division.
  684. @item @var{type} recip (const @var{type}&)
  685. @cindex @code{recip ()}
  686. Returns the reciprocal of the argument.
  687. @end table
  688. The class @code{cl_I} doesn't define a @samp{/} operation because
  689. in the C/C++ language this operator, applied to integral types,
  690. denotes the @samp{floor} or @samp{truncate} operation (which one of these,
  691. is implementation dependent). (@xref{Rounding functions}.)
  692. Instead, @code{cl_I} defines an ``exact quotient'' function:
  693. @table @code
  694. @item cl_I exquo (const cl_I& x, const cl_I& y)
  695. @cindex @code{exquo ()}
  696. Checks that @code{y} divides @code{x}, and returns the quotient @code{x}/@code{y}.
  697. @end table
  698. The following exponentiation functions are defined:
  699. @table @code
  700. @item cl_I expt_pos (const cl_I& x, const cl_I& y)
  701. @cindex @code{expt_pos ()}
  702. @itemx cl_RA expt_pos (const cl_RA& x, const cl_I& y)
  703. @code{y} must be > 0. Returns @code{x^y}.
  704. @item cl_RA expt (const cl_RA& x, const cl_I& y)
  705. @cindex @code{expt ()}
  706. @itemx cl_R expt (const cl_R& x, const cl_I& y)
  707. @itemx cl_N expt (const cl_N& x, const cl_I& y)
  708. Returns @code{x^y}.
  709. @end table
  710. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  711. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  712. defines the following operation:
  713. @table @code
  714. @item @var{type} abs (const @var{type}& x)
  715. @cindex @code{abs ()}
  716. Returns the absolute value of @code{x}.
  717. This is @code{x} if @code{x >= 0}, and @code{-x} if @code{x <= 0}.
  718. @end table
  719. The class @code{cl_N} implements this as follows:
  720. @table @code
  721. @item cl_R abs (const cl_N x)
  722. Returns the absolute value of @code{x}.
  723. @end table
  724. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  725. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  726. defines the following operation:
  727. @table @code
  728. @item @var{type} signum (const @var{type}& x)
  729. @cindex @code{signum ()}
  730. Returns the sign of @code{x}, in the same number format as @code{x}.
  731. This is defined as @code{x / abs(x)} if @code{x} is non-zero, and
  732. @code{x} if @code{x} is zero. If @code{x} is real, the value is either
  733. 0 or 1 or -1.
  734. @end table
  735. @section Elementary rational functions
  736. Each of the classes @code{cl_RA}, @code{cl_I} defines the following operations:
  737. @table @code
  738. @item cl_I numerator (const @var{type}& x)
  739. @cindex @code{numerator ()}
  740. Returns the numerator of @code{x}.
  741. @item cl_I denominator (const @var{type}& x)
  742. @cindex @code{denominator ()}
  743. Returns the denominator of @code{x}.
  744. @end table
  745. The numerator and denominator of a rational number are normalized in such
  746. a way that they have no factor in common and the denominator is positive.
  747. @section Elementary complex functions
  748. The class @code{cl_N} defines the following operation:
  749. @table @code
  750. @item cl_N complex (const cl_R& a, const cl_R& b)
  751. @cindex @code{complex ()}
  752. Returns the complex number @code{a+bi}, that is, the complex number with
  753. real part @code{a} and imaginary part @code{b}.
  754. @end table
  755. Each of the classes @code{cl_N}, @code{cl_R} defines the following operations:
  756. @table @code
  757. @item cl_R realpart (const @var{type}& x)
  758. @cindex @code{realpart ()}
  759. Returns the real part of @code{x}.
  760. @item cl_R imagpart (const @var{type}& x)
  761. @cindex @code{imagpart ()}
  762. Returns the imaginary part of @code{x}.
  763. @item @var{type} conjugate (const @var{type}& x)
  764. @cindex @code{conjugate ()}
  765. Returns the complex conjugate of @code{x}.
  766. @end table
  767. We have the relations
  768. @itemize @asis
  769. @item
  770. @code{x = complex(realpart(x), imagpart(x))}
  771. @item
  772. @code{conjugate(x) = complex(realpart(x), -imagpart(x))}
  773. @end itemize
  774. @section Comparisons
  775. @cindex comparison
  776. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  777. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  778. defines the following operations:
  779. @table @code
  780. @item bool operator == (const @var{type}&, const @var{type}&)
  781. @cindex @code{operator == ()}
  782. @itemx bool operator != (const @var{type}&, const @var{type}&)
  783. @cindex @code{operator != ()}
  784. Comparison, as in C and C++.
  785. @item uint32 cl_equal_hashcode (const @var{type}&)
  786. @cindex @code{cl_equal_hashcode ()}
  787. Returns a 32-bit hash code that is the same for any two numbers which are
  788. the same according to @code{==}. This hash code depends on the number's value,
  789. not its type or precision.
  790. @item cl_boolean zerop (const @var{type}& x)
  791. @cindex @code{zerop ()}
  792. Compare against zero: @code{x == 0}
  793. @end table
  794. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  795. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  796. defines the following operations:
  797. @table @code
  798. @item cl_signean cl_compare (const @var{type}& x, const @var{type}& y)
  799. @cindex @code{cl_compare ()}
  800. Compares @code{x} and @code{y}. Returns +1 if @code{x}>@code{y},
  801. -1 if @code{x}<@code{y}, 0 if @code{x}=@code{y}.
  802. @item bool operator <= (const @var{type}&, const @var{type}&)
  803. @cindex @code{operator <= ()}
  804. @itemx bool operator < (const @var{type}&, const @var{type}&)
  805. @cindex @code{operator < ()}
  806. @itemx bool operator >= (const @var{type}&, const @var{type}&)
  807. @cindex @code{operator >= ()}
  808. @itemx bool operator > (const @var{type}&, const @var{type}&)
  809. @cindex @code{operator > ()}
  810. Comparison, as in C and C++.
  811. @item cl_boolean minusp (const @var{type}& x)
  812. @cindex @code{minusp ()}
  813. Compare against zero: @code{x < 0}
  814. @item cl_boolean plusp (const @var{type}& x)
  815. @cindex @code{plusp ()}
  816. Compare against zero: @code{x > 0}
  817. @item @var{type} max (const @var{type}& x, const @var{type}& y)
  818. @cindex @code{max ()}
  819. Return the maximum of @code{x} and @code{y}.
  820. @item @var{type} min (const @var{type}& x, const @var{type}& y)
  821. @cindex @code{min ()}
  822. Return the minimum of @code{x} and @code{y}.
  823. @end table
  824. When a floating point number and a rational number are compared, the float
  825. is first converted to a rational number using the function @code{rational}.
  826. Since a floating point number actually represents an interval of real numbers,
  827. the result might be surprising.
  828. For example, @code{(cl_F)(cl_R)"1/3" == (cl_R)"1/3"} returns false because
  829. there is no floating point number whose value is exactly @code{1/3}.
  830. @section Rounding functions
  831. @cindex rounding
  832. When a real number is to be converted to an integer, there is no ``best''
  833. rounding. The desired rounding function depends on the application.
  834. The Common Lisp and ISO Lisp standards offer four rounding functions:
  835. @table @code
  836. @item floor(x)
  837. This is the largest integer <=@code{x}.
  838. @item ceiling(x)
  839. This is the smallest integer >=@code{x}.
  840. @item truncate(x)
  841. Among the integers between 0 and @code{x} (inclusive) the one nearest to @code{x}.
  842. @item round(x)
  843. The integer nearest to @code{x}. If @code{x} is exactly halfway between two
  844. integers, choose the even one.
  845. @end table
  846. These functions have different advantages:
  847. @code{floor} and @code{ceiling} are translation invariant:
  848. @code{floor(x+n) = floor(x) + n} and @code{ceiling(x+n) = ceiling(x) + n}
  849. for every @code{x} and every integer @code{n}.
  850. On the other hand, @code{truncate} and @code{round} are symmetric:
  851. @code{truncate(-x) = -truncate(x)} and @code{round(-x) = -round(x)},
  852. and furthermore @code{round} is unbiased: on the ``average'', it rounds
  853. down exactly as often as it rounds up.
  854. The functions are related like this:
  855. @itemize @asis
  856. @item
  857. @code{ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1}
  858. for rational numbers @code{m/n} (@code{m}, @code{n} integers, @code{n}>0), and
  859. @item
  860. @code{truncate(x) = sign(x) * floor(abs(x))}
  861. @end itemize
  862. Each of the classes @code{cl_R}, @code{cl_RA},
  863. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  864. defines the following operations:
  865. @table @code
  866. @item cl_I floor1 (const @var{type}& x)
  867. @cindex @code{floor1 ()}
  868. Returns @code{floor(x)}.
  869. @item cl_I ceiling1 (const @var{type}& x)
  870. @cindex @code{ceiling1 ()}
  871. Returns @code{ceiling(x)}.
  872. @item cl_I truncate1 (const @var{type}& x)
  873. @cindex @code{truncate1 ()}
  874. Returns @code{truncate(x)}.
  875. @item cl_I round1 (const @var{type}& x)
  876. @cindex @code{round1 ()}
  877. Returns @code{round(x)}.
  878. @end table
  879. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  880. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  881. defines the following operations:
  882. @table @code
  883. @item cl_I floor1 (const @var{type}& x, const @var{type}& y)
  884. Returns @code{floor(x/y)}.
  885. @item cl_I ceiling1 (const @var{type}& x, const @var{type}& y)
  886. Returns @code{ceiling(x/y)}.
  887. @item cl_I truncate1 (const @var{type}& x, const @var{type}& y)
  888. Returns @code{truncate(x/y)}.
  889. @item cl_I round1 (const @var{type}& x, const @var{type}& y)
  890. Returns @code{round(x/y)}.
  891. @end table
  892. These functions are called @samp{floor1}, @dots{} here instead of
  893. @samp{floor}, @dots{}, because on some systems, system dependent include
  894. files define @samp{floor} and @samp{ceiling} as macros.
  895. In many cases, one needs both the quotient and the remainder of a division.
  896. It is more efficient to compute both at the same time than to perform
  897. two divisions, one for quotient and the next one for the remainder.
  898. The following functions therefore return a structure containing both
  899. the quotient and the remainder. The suffix @samp{2} indicates the number
  900. of ``return values''. The remainder is defined as follows:
  901. @itemize @bullet
  902. @item
  903. for the computation of @code{quotient = floor(x)},
  904. @code{remainder = x - quotient},
  905. @item
  906. for the computation of @code{quotient = floor(x,y)},
  907. @code{remainder = x - quotient*y},
  908. @end itemize
  909. and similarly for the other three operations.
  910. Each of the classes @code{cl_R}, @code{cl_RA},
  911. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  912. defines the following operations:
  913. @table @code
  914. @item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
  915. @itemx @var{type}_div_t floor2 (const @var{type}& x)
  916. @itemx @var{type}_div_t ceiling2 (const @var{type}& x)
  917. @itemx @var{type}_div_t truncate2 (const @var{type}& x)
  918. @itemx @var{type}_div_t round2 (const @var{type}& x)
  919. @end table
  920. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_I},
  921. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  922. defines the following operations:
  923. @table @code
  924. @item struct @var{type}_div_t @{ cl_I quotient; @var{type} remainder; @};
  925. @itemx @var{type}_div_t floor2 (const @var{type}& x, const @var{type}& y)
  926. @cindex @code{floor2 ()}
  927. @itemx @var{type}_div_t ceiling2 (const @var{type}& x, const @var{type}& y)
  928. @cindex @code{ceiling2 ()}
  929. @itemx @var{type}_div_t truncate2 (const @var{type}& x, const @var{type}& y)
  930. @cindex @code{truncate2 ()}
  931. @itemx @var{type}_div_t round2 (const @var{type}& x, const @var{type}& y)
  932. @cindex @code{round2 ()}
  933. @end table
  934. Sometimes, one wants the quotient as a floating-point number (of the
  935. same format as the argument, if the argument is a float) instead of as
  936. an integer. The prefix @samp{f} indicates this.
  937. Each of the classes
  938. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  939. defines the following operations:
  940. @table @code
  941. @item @var{type} ffloor (const @var{type}& x)
  942. @cindex @code{ffloor ()}
  943. @itemx @var{type} fceiling (const @var{type}& x)
  944. @cindex @code{fceiling ()}
  945. @itemx @var{type} ftruncate (const @var{type}& x)
  946. @cindex @code{ftruncate ()}
  947. @itemx @var{type} fround (const @var{type}& x)
  948. @cindex @code{fround ()}
  949. @end table
  950. and similarly for class @code{cl_R}, but with return type @code{cl_F}.
  951. The class @code{cl_R} defines the following operations:
  952. @table @code
  953. @item cl_F ffloor (const @var{type}& x, const @var{type}& y)
  954. @itemx cl_F fceiling (const @var{type}& x, const @var{type}& y)
  955. @itemx cl_F ftruncate (const @var{type}& x, const @var{type}& y)
  956. @itemx cl_F fround (const @var{type}& x, const @var{type}& y)
  957. @end table
  958. These functions also exist in versions which return both the quotient
  959. and the remainder. The suffix @samp{2} indicates this.
  960. Each of the classes
  961. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  962. defines the following operations:
  963. @cindex @code{cl_F_fdiv_t}
  964. @cindex @code{cl_SF_fdiv_t}
  965. @cindex @code{cl_FF_fdiv_t}
  966. @cindex @code{cl_DF_fdiv_t}
  967. @cindex @code{cl_LF_fdiv_t}
  968. @table @code
  969. @item struct @var{type}_fdiv_t @{ @var{type} quotient; @var{type} remainder; @};
  970. @itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x)
  971. @cindex @code{ffloor2 ()}
  972. @itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x)
  973. @cindex @code{fceiling2 ()}
  974. @itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x)
  975. @cindex @code{ftruncate2 ()}
  976. @itemx @var{type}_fdiv_t fround2 (const @var{type}& x)
  977. @cindex @code{fround2 ()}
  978. @end table
  979. and similarly for class @code{cl_R}, but with quotient type @code{cl_F}.
  980. @cindex @code{cl_R_fdiv_t}
  981. The class @code{cl_R} defines the following operations:
  982. @table @code
  983. @item struct @var{type}_fdiv_t @{ cl_F quotient; cl_R remainder; @};
  984. @itemx @var{type}_fdiv_t ffloor2 (const @var{type}& x, const @var{type}& y)
  985. @itemx @var{type}_fdiv_t fceiling2 (const @var{type}& x, const @var{type}& y)
  986. @itemx @var{type}_fdiv_t ftruncate2 (const @var{type}& x, const @var{type}& y)
  987. @itemx @var{type}_fdiv_t fround2 (const @var{type}& x, const @var{type}& y)
  988. @end table
  989. Other applications need only the remainder of a division.
  990. The remainder of @samp{floor} and @samp{ffloor} is called @samp{mod}
  991. (abbreviation of ``modulo''). The remainder @samp{truncate} and
  992. @samp{ftruncate} is called @samp{rem} (abbreviation of ``remainder'').
  993. @itemize @bullet
  994. @item
  995. @code{mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y}
  996. @item
  997. @code{rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y}
  998. @end itemize
  999. If @code{x} and @code{y} are both >= 0, @code{mod(x,y) = rem(x,y) >= 0}.
  1000. In general, @code{mod(x,y)} has the sign of @code{y} or is zero,
  1001. and @code{rem(x,y)} has the sign of @code{x} or is zero.
  1002. The classes @code{cl_R}, @code{cl_I} define the following operations:
  1003. @table @code
  1004. @item @var{type} mod (const @var{type}& x, const @var{type}& y)
  1005. @cindex @code{mod ()}
  1006. @itemx @var{type} rem (const @var{type}& x, const @var{type}& y)
  1007. @cindex @code{rem ()}
  1008. @end table
  1009. @section Roots
  1010. Each of the classes @code{cl_R},
  1011. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  1012. defines the following operation:
  1013. @table @code
  1014. @item @var{type} sqrt (const @var{type}& x)
  1015. @cindex @code{sqrt ()}
  1016. @code{x} must be >= 0. This function returns the square root of @code{x},
  1017. normalized to be >= 0. If @code{x} is the square of a rational number,
  1018. @code{sqrt(x)} will be a rational number, else it will return a
  1019. floating-point approximation.
  1020. @end table
  1021. The classes @code{cl_RA}, @code{cl_I} define the following operation:
  1022. @table @code
  1023. @item cl_boolean sqrtp (const @var{type}& x, @var{type}* root)
  1024. @cindex @code{sqrtp ()}
  1025. This tests whether @code{x} is a perfect square. If so, it returns true
  1026. and the exact square root in @code{*root}, else it returns false.
  1027. @end table
  1028. Furthermore, for integers, similarly:
  1029. @table @code
  1030. @item cl_boolean isqrt (const @var{type}& x, @var{type}* root)
  1031. @cindex @code{isqrt ()}
  1032. @code{x} should be >= 0. This function sets @code{*root} to
  1033. @code{floor(sqrt(x))} and returns the same value as @code{sqrtp}:
  1034. the boolean value @code{(expt(*root,2) == x)}.
  1035. @end table
  1036. For @code{n}th roots, the classes @code{cl_RA}, @code{cl_I}
  1037. define the following operation:
  1038. @table @code
  1039. @item cl_boolean rootp (const @var{type}& x, const cl_I& n, @var{type}* root)
  1040. @cindex @code{rootp ()}
  1041. @code{x} must be >= 0. @code{n} must be > 0.
  1042. This tests whether @code{x} is an @code{n}th power of a rational number.
  1043. If so, it returns true and the exact root in @code{*root}, else it returns
  1044. false.
  1045. @end table
  1046. The only square root function which accepts negative numbers is the one
  1047. for class @code{cl_N}:
  1048. @table @code
  1049. @item cl_N sqrt (const cl_N& z)
  1050. @cindex @code{sqrt ()}
  1051. Returns the square root of @code{z}, as defined by the formula
  1052. @code{sqrt(z) = exp(log(z)/2)}. Conversion to a floating-point type
  1053. or to a complex number are done if necessary. The range of the result is the
  1054. right half plane @code{realpart(sqrt(z)) >= 0}
  1055. including the positive imaginary axis and 0, but excluding
  1056. the negative imaginary axis.
  1057. The result is an exact number only if @code{z} is an exact number.
  1058. @end table
  1059. @section Transcendental functions
  1060. @cindex transcendental functions
  1061. The transcendental functions return an exact result if the argument
  1062. is exact and the result is exact as well. Otherwise they must return
  1063. inexact numbers even if the argument is exact.
  1064. For example, @code{cos(0) = 1} returns the rational number @code{1}.
  1065. @subsection Exponential and logarithmic functions
  1066. @table @code
  1067. @item cl_R exp (const cl_R& x)
  1068. @cindex @code{exp ()}
  1069. @itemx cl_N exp (const cl_N& x)
  1070. Returns the exponential function of @code{x}. This is @code{e^x} where
  1071. @code{e} is the base of the natural logarithms. The range of the result
  1072. is the entire complex plane excluding 0.
  1073. @item cl_R ln (const cl_R& x)
  1074. @cindex @code{ln ()}
  1075. @code{x} must be > 0. Returns the (natural) logarithm of x.
  1076. @item cl_N log (const cl_N& x)
  1077. @cindex @code{log ()}
  1078. Returns the (natural) logarithm of x. If @code{x} is real and positive,
  1079. this is @code{ln(x)}. In general, @code{log(x) = log(abs(x)) + i*phase(x)}.
  1080. The range of the result is the strip in the complex plane
  1081. @code{-pi < imagpart(log(x)) <= pi}.
  1082. @item cl_R phase (const cl_N& x)
  1083. @cindex @code{phase ()}
  1084. Returns the angle part of @code{x} in its polar representation as a
  1085. complex number. That is, @code{phase(x) = atan(realpart(x),imagpart(x))}.
  1086. This is also the imaginary part of @code{log(x)}.
  1087. The range of the result is the interval @code{-pi < phase(x) <= pi}.
  1088. The result will be an exact number only if @code{zerop(x)} or
  1089. if @code{x} is real and positive.
  1090. @item cl_R log (const cl_R& a, const cl_R& b)
  1091. @code{a} and @code{b} must be > 0. Returns the logarithm of @code{a} with
  1092. respect to base @code{b}. @code{log(a,b) = ln(a)/ln(b)}.
  1093. The result can be exact only if @code{a = 1} or if @code{a} and @code{b}
  1094. are both rational.
  1095. @item cl_N log (const cl_N& a, const cl_N& b)
  1096. Returns the logarithm of @code{a} with respect to base @code{b}.
  1097. @code{log(a,b) = log(a)/log(b)}.
  1098. @item cl_N expt (const cl_N& x, const cl_N& y)
  1099. @cindex @code{expt ()}
  1100. Exponentiation: Returns @code{x^y = exp(y*log(x))}.
  1101. @end table
  1102. The constant e = exp(1) = 2.71828@dots{} is returned by the following functions:
  1103. @table @code
  1104. @item cl_F cl_exp1 (cl_float_format_t f)
  1105. @cindex @code{exp1 ()}
  1106. Returns e as a float of format @code{f}.
  1107. @item cl_F cl_exp1 (const cl_F& y)
  1108. Returns e in the float format of @code{y}.
  1109. @item cl_F cl_exp1 (void)
  1110. Returns e as a float of format @code{cl_default_float_format}.
  1111. @end table
  1112. @subsection Trigonometric functions
  1113. @table @code
  1114. @item cl_R sin (const cl_R& x)
  1115. @cindex @code{sin ()}
  1116. Returns @code{sin(x)}. The range of the result is the interval
  1117. @code{-1 <= sin(x) <= 1}.
  1118. @item cl_N sin (const cl_N& z)
  1119. Returns @code{sin(z)}. The range of the result is the entire complex plane.
  1120. @item cl_R cos (const cl_R& x)
  1121. @cindex @code{cos ()}
  1122. Returns @code{cos(x)}. The range of the result is the interval
  1123. @code{-1 <= cos(x) <= 1}.
  1124. @item cl_N cos (const cl_N& x)
  1125. Returns @code{cos(z)}. The range of the result is the entire complex plane.
  1126. @item struct cl_cos_sin_t @{ cl_R cos; cl_R sin; @};
  1127. @cindex @code{cl_cos_sin_t}
  1128. @itemx cl_cos_sin_t cl_cos_sin (const cl_R& x)
  1129. Returns both @code{sin(x)} and @code{cos(x)}. This is more efficient than
  1130. @cindex @code{cl_cos_sin ()}
  1131. computing them separately. The relation @code{cos^2 + sin^2 = 1} will
  1132. hold only approximately.
  1133. @item cl_R tan (const cl_R& x)
  1134. @cindex @code{tan ()}
  1135. @itemx cl_N tan (const cl_N& x)
  1136. Returns @code{tan(x) = sin(x)/cos(x)}.
  1137. @item cl_N cis (const cl_R& x)
  1138. @cindex @code{cis ()}
  1139. @itemx cl_N cis (const cl_N& x)
  1140. Returns @code{exp(i*x)}. The name @samp{cis} means ``cos + i sin'', because
  1141. @code{e^(i*x) = cos(x) + i*sin(x)}.
  1142. @cindex @code{asin}
  1143. @cindex @code{asin ()}
  1144. @item cl_N asin (const cl_N& z)
  1145. Returns @code{arcsin(z)}. This is defined as
  1146. @code{arcsin(z) = log(iz+sqrt(1-z^2))/i} and satisfies
  1147. @code{arcsin(-z) = -arcsin(z)}.
  1148. The range of the result is the strip in the complex domain
  1149. @code{-pi/2 <= realpart(arcsin(z)) <= pi/2}, excluding the numbers
  1150. with @code{realpart = -pi/2} and @code{imagpart < 0} and the numbers
  1151. with @code{realpart = pi/2} and @code{imagpart > 0}.
  1152. @ignore
  1153. Proof: This follows from arcsin(z) = arsinh(iz)/i and the corresponding
  1154. results for arsinh.
  1155. @end ignore
  1156. @item cl_N acos (const cl_N& z)
  1157. @cindex @code{acos ()}
  1158. Returns @code{arccos(z)}. This is defined as
  1159. @code{arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i}
  1160. @ignore
  1161. Kahan's formula:
  1162. @code{arccos(z) = 2*log(sqrt((1+z)/2)+i*sqrt((1-z)/2))/i}
  1163. @end ignore
  1164. and satisfies @code{arccos(-z) = pi - arccos(z)}.
  1165. The range of the result is the strip in the complex domain
  1166. @code{0 <= realpart(arcsin(z)) <= pi}, excluding the numbers
  1167. with @code{realpart = 0} and @code{imagpart < 0} and the numbers
  1168. with @code{realpart = pi} and @code{imagpart > 0}.
  1169. @ignore
  1170. Proof: This follows from the results about arcsin.
  1171. @end ignore
  1172. @cindex @code{atan}
  1173. @cindex @code{atan ()}
  1174. @item cl_R atan (const cl_R& x, const cl_R& y)
  1175. Returns the angle of the polar representation of the complex number
  1176. @code{x+iy}. This is @code{atan(y/x)} if @code{x>0}. The range of
  1177. the result is the interval @code{-pi < atan(x,y) <= pi}. The result will
  1178. be an exact number only if @code{x > 0} and @code{y} is the exact @code{0}.
  1179. WARNING: In Common Lisp, this function is called as @code{(atan y x)},
  1180. with reversed order of arguments.
  1181. @item cl_R atan (const cl_R& x)
  1182. Returns @code{arctan(x)}. This is the same as @code{atan(1,x)}. The range
  1183. of the result is the interval @code{-pi/2 < atan(x) < pi/2}. The result
  1184. will be an exact number only if @code{x} is the exact @code{0}.
  1185. @item cl_N atan (const cl_N& z)
  1186. Returns @code{arctan(z)}. This is defined as
  1187. @code{arctan(z) = (log(1+iz)-log(1-iz)) / 2i} and satisfies
  1188. @code{arctan(-z) = -arctan(z)}. The range of the result is
  1189. the strip in the complex domain
  1190. @code{-pi/2 <= realpart(arctan(z)) <= pi/2}, excluding the numbers
  1191. with @code{realpart = -pi/2} and @code{imagpart >= 0} and the numbers
  1192. with @code{realpart = pi/2} and @code{imagpart <= 0}.
  1193. @ignore
  1194. Proof: arctan(z) = artanh(iz)/i, we know the range of the artanh function.
  1195. @end ignore
  1196. @end table
  1197. @cindex pi
  1198. @cindex Archimedes' constant
  1199. Archimedes' constant pi = 3.14@dots{} is returned by the following functions:
  1200. @table @code
  1201. @item cl_F cl_pi (cl_float_format_t f)
  1202. @cindex @code{cl_pi ()}
  1203. Returns pi as a float of format @code{f}.
  1204. @item cl_F cl_pi (const cl_F& y)
  1205. Returns pi in the float format of @code{y}.
  1206. @item cl_F cl_pi (void)
  1207. Returns pi as a float of format @code{cl_default_float_format}.
  1208. @end table
  1209. @subsection Hyperbolic functions
  1210. @table @code
  1211. @item cl_R sinh (const cl_R& x)
  1212. @cindex @code{sinh ()}
  1213. Returns @code{sinh(x)}.
  1214. @item cl_N sinh (const cl_N& z)
  1215. Returns @code{sinh(z)}. The range of the result is the entire complex plane.
  1216. @item cl_R cosh (const cl_R& x)
  1217. @cindex @code{cosh ()}
  1218. Returns @code{cosh(x)}. The range of the result is the interval
  1219. @code{cosh(x) >= 1}.
  1220. @item cl_N cosh (const cl_N& z)
  1221. Returns @code{cosh(z)}. The range of the result is the entire complex plane.
  1222. @item struct cl_cosh_sinh_t @{ cl_R cosh; cl_R sinh; @};
  1223. @cindex @code{cl_cosh_sinh_t}
  1224. @itemx cl_cosh_sinh_t cl_cosh_sinh (const cl_R& x)
  1225. @cindex @code{cl_cosh_sinh ()}
  1226. Returns both @code{sinh(x)} and @code{cosh(x)}. This is more efficient than
  1227. computing them separately. The relation @code{cosh^2 - sinh^2 = 1} will
  1228. hold only approximately.
  1229. @item cl_R tanh (const cl_R& x)
  1230. @cindex @code{tanh ()}
  1231. @itemx cl_N tanh (const cl_N& x)
  1232. Returns @code{tanh(x) = sinh(x)/cosh(x)}.
  1233. @item cl_N asinh (const cl_N& z)
  1234. @cindex @code{asinh ()}
  1235. Returns @code{arsinh(z)}. This is defined as
  1236. @code{arsinh(z) = log(z+sqrt(1+z^2))} and satisfies
  1237. @code{arsinh(-z) = -arsinh(z)}.
  1238. @ignore
  1239. Proof: Knowing the range of log, we know -pi < imagpart(arsinh(z)) <= pi.
  1240. Actually, z+sqrt(1+z^2) can never be real and <0, so
  1241. -pi < imagpart(arsinh(z)) < pi.
  1242. We have (z+sqrt(1+z^2))*(-z+sqrt(1+(-z)^2)) = (1+z^2)-z^2 = 1, hence the
  1243. logs of both factors sum up to 0 mod 2*pi*i, hence to 0.
  1244. @end ignore
  1245. The range of the result is the strip in the complex domain
  1246. @code{-pi/2 <= imagpart(arsinh(z)) <= pi/2}, excluding the numbers
  1247. with @code{imagpart = -pi/2} and @code{realpart > 0} and the numbers
  1248. with @code{imagpart = pi/2} and @code{realpart < 0}.
  1249. @ignore
  1250. Proof: Write z = x+iy. Because of arsinh(-z) = -arsinh(z), we may assume
  1251. that z is in Range(sqrt), that is, x>=0 and, if x=0, then y>=0.
  1252. If x > 0, then Re(z+sqrt(1+z^2)) = x + Re(sqrt(1+z^2)) >= x > 0,
  1253. so -pi/2 < imagpart(log(z+sqrt(1+z^2))) < pi/2.
  1254. If x = 0 and y >= 0, arsinh(z) = log(i*y+sqrt(1-y^2)).
  1255. If y <= 1, the realpart is 0 and the imagpart is >= 0 and <= pi/2.
  1256. If y >= 1, the imagpart is pi/2 and the realpart is
  1257. log(y+sqrt(y^2-1)) >= log(y) >= 0.
  1258. @end ignore
  1259. @ignore
  1260. Moreover, if z is in Range(sqrt),
  1261. log(sqrt(1+z^2)+z) = 2 artanh(z/(1+sqrt(1+z^2)))
  1262. (for a proof, see file src/cl_C_asinh.cc).
  1263. @end ignore
  1264. @item cl_N acosh (const cl_N& z)
  1265. @cindex @code{acosh ()}
  1266. Returns @code{arcosh(z)}. This is defined as
  1267. @code{arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))}.
  1268. The range of the result is the half-strip in the complex domain
  1269. @code{-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0},
  1270. excluding the numbers with @code{realpart = 0} and @code{-pi < imagpart < 0}.
  1271. @ignore
  1272. Proof: sqrt((z+1)/2) and sqrt((z-1)/2)) lie in Range(sqrt), hence does
  1273. their sum, hence its log has an imagpart <= pi/2 and > -pi/2.
  1274. If z is in Range(sqrt), we have
  1275. sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1)
  1276. ==> (sqrt((z+1)/2)+sqrt((z-1)/2))^2 = (z+1)/2 + sqrt(z^2-1) + (z-1)/2
  1277. = z + sqrt(z^2-1)
  1278. ==> arcosh(z) = log(z+sqrt(z^2-1)) mod 2*pi*i
  1279. and since the imagpart of both expressions is > -pi, <= pi
  1280. ==> arcosh(z) = log(z+sqrt(z^2-1))
  1281. To prove that the realpart of this is >= 0, write z = x+iy with x>=0,
  1282. z^2-1 = u+iv with u = x^2-y^2-1, v = 2xy,
  1283. sqrt(z^2-1) = p+iq with p = sqrt((sqrt(u^2+v^2)+u)/2) >= 0,
  1284. q = sqrt((sqrt(u^2+v^2)-u)/2) * sign(v),
  1285. then |z+sqrt(z^2-1)|^2 = |x+iy + p+iq|^2
  1286. = (x+p)^2 + (y+q)^2
  1287. = x^2 + 2xp + p^2 + y^2 + 2yq + q^2
  1288. >= x^2 + p^2 + y^2 + q^2 (since x>=0, p>=0, yq>=0)
  1289. = x^2 + y^2 + sqrt(u^2+v^2)
  1290. >= x^2 + y^2 + |u|
  1291. >= x^2 + y^2 - u
  1292. = 1 + 2*y^2
  1293. >= 1
  1294. hence realpart(log(z+sqrt(z^2-1))) = log(|z+sqrt(z^2-1)|) >= 0.
  1295. Equality holds only if y = 0 and u <= 0, i.e. 0 <= x < 1.
  1296. In this case arcosh(z) = log(x+i*sqrt(1-x^2)) has imagpart >=0.
  1297. Otherwise, -z is in Range(sqrt).
  1298. If y != 0, sqrt((z+1)/2) = i^sign(y) * sqrt((-z-1)/2),
  1299. sqrt((z-1)/2) = i^sign(y) * sqrt((-z+1)/2),
  1300. hence arcosh(z) = sign(y)*pi/2*i + arcosh(-z),
  1301. and this has realpart > 0.
  1302. If y = 0 and -1<=x<=0, we still have sqrt(z+1)*sqrt(z-1) = sqrt(z^2-1),
  1303. ==> arcosh(z) = log(z+sqrt(z^2-1)) = log(x+i*sqrt(1-x^2))
  1304. has realpart = 0 and imagpart > 0.
  1305. If y = 0 and x<=-1, however, sqrt(z+1)*sqrt(z-1) = - sqrt(z^2-1),
  1306. ==> arcosh(z) = log(z-sqrt(z^2-1)) = pi*i + arcosh(-z).
  1307. This has realpart >= 0 and imagpart = pi.
  1308. @end ignore
  1309. @item cl_N atanh (const cl_N& z)
  1310. @cindex @code{atanh ()}
  1311. Returns @code{artanh(z)}. This is defined as
  1312. @code{artanh(z) = (log(1+z)-log(1-z)) / 2} and satisfies
  1313. @code{artanh(-z) = -artanh(z)}. The range of the result is
  1314. the strip in the complex domain
  1315. @code{-pi/2 <= imagpart(artanh(z)) <= pi/2}, excluding the numbers
  1316. with @code{imagpart = -pi/2} and @code{realpart <= 0} and the numbers
  1317. with @code{imagpart = pi/2} and @code{realpart >= 0}.
  1318. @ignore
  1319. Proof: Write z = x+iy. Examine
  1320. imagpart(artanh(z)) = (atan(1+x,y) - atan(1-x,-y))/2.
  1321. Case 1: y = 0.
  1322. x > 1 ==> imagpart = -pi/2, realpart = 1/2 log((x+1)/(x-1)) > 0,
  1323. x < -1 ==> imagpart = pi/2, realpart = 1/2 log((-x-1)/(-x+1)) < 0,
  1324. |x| < 1 ==> imagpart = 0
  1325. Case 2: y > 0.
  1326. imagpart(artanh(z))
  1327. = (atan(1+x,y) - atan(1-x,-y))/2
  1328. = ((pi/2 - atan((1+x)/y)) - (-pi/2 - atan((1-x)/-y)))/2
  1329. = (pi - atan((1+x)/y) - atan((1-x)/y))/2
  1330. > (pi - pi/2 - pi/2 )/2 = 0
  1331. and (1+x)/y > (1-x)/y
  1332. ==> atan((1+x)/y) > atan((-1+x)/y) = - atan((1-x)/y)
  1333. ==> imagpart < pi/2.
  1334. Hence 0 < imagpart < pi/2.
  1335. Case 3: y < 0.
  1336. By artanh(z) = -artanh(-z) and case 2, -pi/2 < imagpart < 0.
  1337. @end ignore
  1338. @end table
  1339. @subsection Euler gamma
  1340. @cindex Euler's constant
  1341. Euler's constant C = 0.577@dots{} is returned by the following functions:
  1342. @table @code
  1343. @item cl_F cl_eulerconst (cl_float_format_t f)
  1344. @cindex @code{cl_eulerconst ()}
  1345. Returns Euler's constant as a float of format @code{f}.
  1346. @item cl_F cl_eulerconst (const cl_F& y)
  1347. Returns Euler's constant in the float format of @code{y}.
  1348. @item cl_F cl_eulerconst (void)
  1349. Returns Euler's constant as a float of format @code{cl_default_float_format}.
  1350. @end table
  1351. Catalan's constant G = 0.915@dots{} is returned by the following functions:
  1352. @cindex Catalan's constant
  1353. @table @code
  1354. @item cl_F cl_catalanconst (cl_float_format_t f)
  1355. @cindex @code{cl_catalanconst ()}
  1356. Returns Catalan's constant as a float of format @code{f}.
  1357. @item cl_F cl_catalanconst (const cl_F& y)
  1358. Returns Catalan's constant in the float format of @code{y}.
  1359. @item cl_F cl_catalanconst (void)
  1360. Returns Catalan's constant as a float of format @code{cl_default_float_format}.
  1361. @end table
  1362. @subsection Riemann zeta
  1363. @cindex Riemann's zeta
  1364. Riemann's zeta function at an integral point @code{s>1} is returned by the
  1365. following functions:
  1366. @table @code
  1367. @item cl_F cl_zeta (int s, cl_float_format_t f)
  1368. @cindex @code{cl_zeta ()}
  1369. Returns Riemann's zeta function at @code{s} as a float of format @code{f}.
  1370. @item cl_F cl_zeta (int s, const cl_F& y)
  1371. Returns Riemann's zeta function at @code{s} in the float format of @code{y}.
  1372. @item cl_F cl_zeta (int s)
  1373. Returns Riemann's zeta function at @code{s} as a float of format
  1374. @code{cl_default_float_format}.
  1375. @end table
  1376. @section Functions on integers
  1377. @subsection Logical functions
  1378. Integers, when viewed as in two's complement notation, can be thought as
  1379. infinite bit strings where the bits' values eventually are constant.
  1380. For example,
  1381. @example
  1382. 17 = ......00010001
  1383. -6 = ......11111010
  1384. @end example
  1385. The logical operations view integers as such bit strings and operate
  1386. on each of the bit positions in parallel.
  1387. @table @code
  1388. @item cl_I lognot (const cl_I& x)
  1389. @cindex @code{lognot ()}
  1390. @itemx cl_I operator ~ (const cl_I& x)
  1391. @cindex @code{operator ~ ()}
  1392. Logical not, like @code{~x} in C. This is the same as @code{-1-x}.
  1393. @item cl_I logand (const cl_I& x, const cl_I& y)
  1394. @cindex @code{logand ()}
  1395. @itemx cl_I operator & (const cl_I& x, const cl_I& y)
  1396. @cindex @code{operator & ()}
  1397. Logical and, like @code{x & y} in C.
  1398. @item cl_I logior (const cl_I& x, const cl_I& y)
  1399. @cindex @code{logior ()}
  1400. @itemx cl_I operator | (const cl_I& x, const cl_I& y)
  1401. @cindex @code{operator | ()}
  1402. Logical (inclusive) or, like @code{x | y} in C.
  1403. @item cl_I logxor (const cl_I& x, const cl_I& y)
  1404. @cindex @code{logxor ()}
  1405. @itemx cl_I operator ^ (const cl_I& x, const cl_I& y)
  1406. @cindex @code{operator ^ ()}
  1407. Exclusive or, like @code{x ^ y} in C.
  1408. @item cl_I logeqv (const cl_I& x, const cl_I& y)
  1409. @cindex @code{logeqv ()}
  1410. Bitwise equivalence, like @code{~(x ^ y)} in C.
  1411. @item cl_I lognand (const cl_I& x, const cl_I& y)
  1412. @cindex @code{lognand ()}
  1413. Bitwise not and, like @code{~(x & y)} in C.
  1414. @item cl_I lognor (const cl_I& x, const cl_I& y)
  1415. @cindex @code{lognor ()}
  1416. Bitwise not or, like @code{~(x | y)} in C.
  1417. @item cl_I logandc1 (const cl_I& x, const cl_I& y)
  1418. @cindex @code{logandc1 ()}
  1419. Logical and, complementing the first argument, like @code{~x & y} in C.
  1420. @item cl_I logandc2 (const cl_I& x, const cl_I& y)
  1421. @cindex @code{logandc2 ()}
  1422. Logical and, complementing the second argument, like @code{x & ~y} in C.
  1423. @item cl_I logorc1 (const cl_I& x, const cl_I& y)
  1424. @cindex @code{logorc1 ()}
  1425. Logical or, complementing the first argument, like @code{~x | y} in C.
  1426. @item cl_I logorc2 (const cl_I& x, const cl_I& y)
  1427. @cindex @code{logorc2 ()}
  1428. Logical or, complementing the second argument, like @code{x | ~y} in C.
  1429. @end table
  1430. These operations are all available though the function
  1431. @table @code
  1432. @item cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)
  1433. @cindex @code{boole ()}
  1434. @end table
  1435. where @code{op} must have one of the 16 values (each one stands for a function
  1436. which combines two bits into one bit): @code{boole_clr}, @code{boole_set},
  1437. @code{boole_1}, @code{boole_2}, @code{boole_c1}, @code{boole_c2},
  1438. @code{boole_and}, @code{boole_ior}, @code{boole_xor}, @code{boole_eqv},
  1439. @code{boole_nand}, @code{boole_nor}, @code{boole_andc1}, @code{boole_andc2},
  1440. @code{boole_orc1}, @code{boole_orc2}.
  1441. @cindex @code{boole_clr}
  1442. @cindex @code{boole_set}
  1443. @cindex @code{boole_1}
  1444. @cindex @code{boole_2}
  1445. @cindex @code{boole_c1}
  1446. @cindex @code{boole_c2}
  1447. @cindex @code{boole_and}
  1448. @cindex @code{boole_xor}
  1449. @cindex @code{boole_eqv}
  1450. @cindex @code{boole_nand}
  1451. @cindex @code{boole_nor}
  1452. @cindex @code{boole_andc1}
  1453. @cindex @code{boole_andc2}
  1454. @cindex @code{boole_orc1}
  1455. @cindex @code{boole_orc2}
  1456. Other functions that view integers as bit strings:
  1457. @table @code
  1458. @item cl_boolean logtest (const cl_I& x, const cl_I& y)
  1459. @cindex @code{logtest ()}
  1460. Returns true if some bit is set in both @code{x} and @code{y}, i.e. if
  1461. @code{logand(x,y) != 0}.
  1462. @item cl_boolean logbitp (const cl_I& n, const cl_I& x)
  1463. @cindex @code{logbitp ()}
  1464. Returns true if the @code{n}th bit (from the right) of @code{x} is set.
  1465. Bit 0 is the least significant bit.
  1466. @item uintL logcount (const cl_I& x)
  1467. @cindex @code{logcount ()}
  1468. Returns the number of one bits in @code{x}, if @code{x} >= 0, or
  1469. the number of zero bits in @code{x}, if @code{x} < 0.
  1470. @end table
  1471. The following functions operate on intervals of bits in integers.
  1472. The type
  1473. @example
  1474. struct cl_byte @{ uintL size; uintL position; @};
  1475. @end example
  1476. @cindex @code{cl_byte}
  1477. represents the bit interval containing the bits
  1478. @code{position}@dots{}@code{position+size-1} of an integer.
  1479. The constructor @code{cl_byte(size,position)} constructs a @code{cl_byte}.
  1480. @table @code
  1481. @item cl_I ldb (const cl_I& n, const cl_byte& b)
  1482. @cindex @code{ldb ()}
  1483. extracts the bits of @code{n} described by the bit interval @code{b}
  1484. and returns them as a nonnegative integer with @code{b.size} bits.
  1485. @item cl_boolean ldb_test (const cl_I& n, const cl_byte& b)
  1486. @cindex @code{ldb_test ()}
  1487. Returns true if some bit described by the bit interval @code{b} is set in
  1488. @code{n}.
  1489. @item cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
  1490. @cindex @code{dpb ()}
  1491. Returns @code{n}, with the bits described by the bit interval @code{b}
  1492. replaced by @code{newbyte}. Only the lowest @code{b.size} bits of
  1493. @code{newbyte} are relevant.
  1494. @end table
  1495. The functions @code{ldb} and @code{dpb} implicitly shift. The following
  1496. functions are their counterparts without shifting:
  1497. @table @code
  1498. @item cl_I mask_field (const cl_I& n, const cl_byte& b)
  1499. @cindex @code{mask_field ()}
  1500. returns an integer with the bits described by the bit interval @code{b}
  1501. copied from the corresponding bits in @code{n}, the other bits zero.
  1502. @item cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)
  1503. @cindex @code{deposit_field ()}
  1504. returns an integer where the bits described by the bit interval @code{b}
  1505. come from @code{newbyte} and the other bits come from @code{n}.
  1506. @end table
  1507. The following relations hold:
  1508. @itemize @asis
  1509. @item
  1510. @code{ldb (n, b) = mask_field(n, b) >> b.position},
  1511. @item
  1512. @code{dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)},
  1513. @item
  1514. @code{deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)}.
  1515. @end itemize
  1516. The following operations on integers as bit strings are efficient shortcuts
  1517. for common arithmetic operations:
  1518. @table @code
  1519. @item cl_boolean oddp (const cl_I& x)
  1520. @cindex @code{oddp ()}
  1521. Returns true if the least significant bit of @code{x} is 1. Equivalent to
  1522. @code{mod(x,2) != 0}.
  1523. @item cl_boolean evenp (const cl_I& x)
  1524. @cindex @code{evenp ()}
  1525. Returns true if the least significant bit of @code{x} is 0. Equivalent to
  1526. @code{mod(x,2) == 0}.
  1527. @item cl_I operator << (const cl_I& x, const cl_I& n)
  1528. @cindex @code{operator << ()}
  1529. Shifts @code{x} by @code{n} bits to the left. @code{n} should be >=0.
  1530. Equivalent to @code{x * expt(2,n)}.
  1531. @item cl_I operator >> (const cl_I& x, const cl_I& n)
  1532. @cindex @code{operator >> ()}
  1533. Shifts @code{x} by @code{n} bits to the right. @code{n} should be >=0.
  1534. Bits shifted out to the right are thrown away.
  1535. Equivalent to @code{floor(x / expt(2,n))}.
  1536. @item cl_I ash (const cl_I& x, const cl_I& y)
  1537. @cindex @code{ash ()}
  1538. Shifts @code{x} by @code{y} bits to the left (if @code{y}>=0) or
  1539. by @code{-y} bits to the right (if @code{y}<=0). In other words, this
  1540. returns @code{floor(x * expt(2,y))}.
  1541. @item uintL integer_length (const cl_I& x)
  1542. @cindex @code{integer_length ()}
  1543. Returns the number of bits (excluding the sign bit) needed to represent @code{x}
  1544. in two's complement notation. This is the smallest n >= 0 such that
  1545. -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that
  1546. 2^(n-1) <= x < 2^n.
  1547. @item uintL ord2 (const cl_I& x)
  1548. @cindex @code{ord2 ()}
  1549. @code{x} must be non-zero. This function returns the number of 0 bits at the
  1550. right of @code{x} in two's complement notation. This is the largest n >= 0
  1551. such that 2^n divides @code{x}.
  1552. @item uintL power2p (const cl_I& x)
  1553. @cindex @code{power2p ()}
  1554. @code{x} must be > 0. This function checks whether @code{x} is a power of 2.
  1555. If @code{x} = 2^(n-1), it returns n. Else it returns 0.
  1556. (See also the function @code{logp}.)
  1557. @end table
  1558. @subsection Number theoretic functions
  1559. @table @code
  1560. @item uint32 gcd (uint32 a, uint32 b)
  1561. @cindex @code{gcd ()}
  1562. @itemx cl_I gcd (const cl_I& a, const cl_I& b)
  1563. This function returns the greatest common divisor of @code{a} and @code{b},
  1564. normalized to be >= 0.
  1565. @item cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)
  1566. @cindex @code{xgcd ()}
  1567. This function (``extended gcd'') returns the greatest common divisor @code{g} of
  1568. @code{a} and @code{b} and at the same time the representation of @code{g}
  1569. as an integral linear combination of @code{a} and @code{b}:
  1570. @code{u} and @code{v} with @code{u*a+v*b = g}, @code{g} >= 0.
  1571. @code{u} and @code{v} will be normalized to be of smallest possible absolute
  1572. value, in the following sense: If @code{a} and @code{b} are non-zero, and
  1573. @code{abs(a) != abs(b)}, @code{u} and @code{v} will satisfy the inequalities
  1574. @code{abs(u) <= abs(b)/(2*g)}, @code{abs(v) <= abs(a)/(2*g)}.
  1575. @item cl_I lcm (const cl_I& a, const cl_I& b)
  1576. @cindex @code{lcm ()}
  1577. This function returns the least common multiple of @code{a} and @code{b},
  1578. normalized to be >= 0.
  1579. @item cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l)
  1580. @cindex @code{logp ()}
  1581. @itemx cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l)
  1582. @code{a} must be > 0. @code{b} must be >0 and != 1. If log(a,b) is
  1583. rational number, this function returns true and sets *l = log(a,b), else
  1584. it returns false.
  1585. @end table
  1586. @subsection Combinatorial functions
  1587. @table @code
  1588. @item cl_I factorial (uintL n)
  1589. @cindex @code{factorial ()}
  1590. @code{n} must be a small integer >= 0. This function returns the factorial
  1591. @code{n}! = @code{1*2*@dots{}*n}.
  1592. @item cl_I doublefactorial (uintL n)
  1593. @cindex @code{doublefactorial ()}
  1594. @code{n} must be a small integer >= 0. This function returns the
  1595. doublefactorial @code{n}!! = @code{1*3*@dots{}*n} or
  1596. @code{n}!! = @code{2*4*@dots{}*n}, respectively.
  1597. @item cl_I binomial (uintL n, uintL k)
  1598. @cindex @code{binomial ()}
  1599. @code{n} and @code{k} must be small integers >= 0. This function returns the
  1600. binomial coefficient
  1601. @tex
  1602. ${n \choose k} = {n! \over n! (n-k)!}$
  1603. @end tex
  1604. @ifinfo
  1605. (@code{n} choose @code{k}) = @code{n}! / @code{k}! @code{(n-k)}!
  1606. @end ifinfo
  1607. for 0 <= k <= n, 0 else.
  1608. @end table
  1609. @section Functions on floating-point numbers
  1610. Recall that a floating-point number consists of a sign @code{s}, an
  1611. exponent @code{e} and a mantissa @code{m}. The value of the number is
  1612. @code{(-1)^s * 2^e * m}.
  1613. Each of the classes
  1614. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  1615. defines the following operations.
  1616. @table @code
  1617. @item @var{type} scale_float (const @var{type}& x, sintL delta)
  1618. @cindex @code{scale_float ()}
  1619. @itemx @var{type} scale_float (const @var{type}& x, const cl_I& delta)
  1620. Returns @code{x*2^delta}. This is more efficient than an explicit multiplication
  1621. because it copies @code{x} and modifies the exponent.
  1622. @end table
  1623. The following functions provide an abstract interface to the underlying
  1624. representation of floating-point numbers.
  1625. @table @code
  1626. @item sintL float_exponent (const @var{type}& x)
  1627. @cindex @code{float_exponent ()}
  1628. Returns the exponent @code{e} of @code{x}.
  1629. For @code{x = 0.0}, this is 0. For @code{x} non-zero, this is the unique
  1630. integer with @code{2^(e-1) <= abs(x) < 2^e}.
  1631. @item sintL float_radix (const @var{type}& x)
  1632. @cindex @code{float_radix ()}
  1633. Returns the base of the floating-point representation. This is always @code{2}.
  1634. @item @var{type} float_sign (const @var{type}& x)
  1635. @cindex @code{float_sign ()}
  1636. Returns the sign @code{s} of @code{x} as a float. The value is 1 for
  1637. @code{x} >= 0, -1 for @code{x} < 0.
  1638. @item uintL float_digits (const @var{type}& x)
  1639. @cindex @code{float_digits ()}
  1640. Returns the number of mantissa bits in the floating-point representation
  1641. of @code{x}, including the hidden bit. The value only depends on the type
  1642. of @code{x}, not on its value.
  1643. @item uintL float_precision (const @var{type}& x)
  1644. @cindex @code{float_precision ()}
  1645. Returns the number of significant mantissa bits in the floating-point
  1646. representation of @code{x}. Since denormalized numbers are not supported,
  1647. this is the same as @code{float_digits(x)} if @code{x} is non-zero, and
  1648. 0 if @code{x} = 0.
  1649. @end table
  1650. The complete internal representation of a float is encoded in the type
  1651. @cindex @code{cl_decoded_float}
  1652. @cindex @code{cl_decoded_sfloat}
  1653. @cindex @code{cl_decoded_ffloat}
  1654. @cindex @code{cl_decoded_dfloat}
  1655. @cindex @code{cl_decoded_lfloat}
  1656. @code{cl_decoded_float} (or @code{cl_decoded_sfloat}, @code{cl_decoded_ffloat},
  1657. @code{cl_decoded_dfloat}, @code{cl_decoded_lfloat}, respectively), defined by
  1658. @example
  1659. struct cl_decoded_@var{type}float @{
  1660. @var{type} mantissa; cl_I exponent; @var{type} sign;
  1661. @};
  1662. @end example
  1663. and returned by the function
  1664. @table @code
  1665. @item cl_decoded_@var{type}float decode_float (const @var{type}& x)
  1666. @cindex @code{decode_float ()}
  1667. For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
  1668. @code{x = (-1)^s * 2^e * m} and @code{0.5 <= m < 1.0}. For @code{x} = 0,
  1669. it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
  1670. @code{e} is the same as returned by the function @code{float_exponent}.
  1671. @end table
  1672. A complete decoding in terms of integers is provided as type
  1673. @example
  1674. @cindex @code{cl_idecoded_float}
  1675. struct cl_idecoded_float @{
  1676. cl_I mantissa; cl_I exponent; cl_I sign;
  1677. @};
  1678. @end example
  1679. by the following function:
  1680. @table @code
  1681. @item cl_idecoded_float integer_decode_float (const @var{type}& x)
  1682. @cindex @code{integer_decode_float ()}
  1683. For @code{x} non-zero, this returns @code{(-1)^s}, @code{e}, @code{m} with
  1684. @code{x = (-1)^s * 2^e * m} and @code{m} an integer with @code{float_digits(x)}
  1685. bits. For @code{x} = 0, it returns @code{(-1)^s}=1, @code{e}=0, @code{m}=0.
  1686. WARNING: The exponent @code{e} is not the same as the one returned by
  1687. the functions @code{decode_float} and @code{float_exponent}.
  1688. @end table
  1689. Some other function, implemented only for class @code{cl_F}:
  1690. @table @code
  1691. @item cl_F float_sign (const cl_F& x, const cl_F& y)
  1692. @cindex @code{float_sign ()}
  1693. This returns a floating point number whose precision and absolute value
  1694. is that of @code{y} and whose sign is that of @code{x}. If @code{x} is
  1695. zero, it is treated as positive. Same for @code{y}.
  1696. @end table
  1697. @section Conversion functions
  1698. @cindex conversion
  1699. @subsection Conversion to floating-point numbers
  1700. The type @code{cl_float_format_t} describes a floating-point format.
  1701. @cindex @code{cl_float_format_t}
  1702. @table @code
  1703. @item cl_float_format_t cl_float_format (uintL n)
  1704. @cindex @code{cl_float_format ()}
  1705. Returns the smallest float format which guarantees at least @code{n}
  1706. decimal digits in the mantissa (after the decimal point).
  1707. @item cl_float_format_t cl_float_format (const cl_F& x)
  1708. Returns the floating point format of @code{x}.
  1709. @item cl_float_format_t cl_default_float_format
  1710. @cindex @code{cl_default_float_format}
  1711. Global variable: the default float format used when converting rational numbers
  1712. to floats.
  1713. @end table
  1714. To convert a real number to a float, each of the types
  1715. @code{cl_R}, @code{cl_F}, @code{cl_I}, @code{cl_RA},
  1716. @code{int}, @code{unsigned int}, @code{float}, @code{double}
  1717. defines the following operations:
  1718. @table @code
  1719. @item cl_F cl_float (const @var{type}&x, cl_float_format_t f)
  1720. @cindex @code{cl_float ()}
  1721. Returns @code{x} as a float of format @code{f}.
  1722. @item cl_F cl_float (const @var{type}&x, const cl_F& y)
  1723. Returns @code{x} in the float format of @code{y}.
  1724. @item cl_F cl_float (const @var{type}&x)
  1725. Returns @code{x} as a float of format @code{cl_default_float_format} if
  1726. it is an exact number, or @code{x} itself if it is already a float.
  1727. @end table
  1728. Of course, converting a number to a float can lose precision.
  1729. Every floating-point format has some characteristic numbers:
  1730. @table @code
  1731. @item cl_F most_positive_float (cl_float_format_t f)
  1732. @cindex @code{most_positive_float ()}
  1733. Returns the largest (most positive) floating point number in float format @code{f}.
  1734. @item cl_F most_negative_float (cl_float_format_t f)
  1735. @cindex @code{most_negative_float ()}
  1736. Returns the smallest (most negative) floating point number in float format @code{f}.
  1737. @item cl_F least_positive_float (cl_float_format_t f)
  1738. @cindex @code{least_positive_float ()}
  1739. Returns the least positive floating point number (i.e. > 0 but closest to 0)
  1740. in float format @code{f}.
  1741. @item cl_F least_negative_float (cl_float_format_t f)
  1742. @cindex @code{least_negative_float ()}
  1743. Returns the least negative floating point number (i.e. < 0 but closest to 0)
  1744. in float format @code{f}.
  1745. @item cl_F float_epsilon (cl_float_format_t f)
  1746. @cindex @code{float_epsilon ()}
  1747. Returns the smallest floating point number e > 0 such that @code{1+e != 1}.
  1748. @item cl_F float_negative_epsilon (cl_float_format_t f)
  1749. @cindex @code{float_negative_epsilon ()}
  1750. Returns the smallest floating point number e > 0 such that @code{1-e != 1}.
  1751. @end table
  1752. @subsection Conversion to rational numbers
  1753. Each of the classes @code{cl_R}, @code{cl_RA}, @code{cl_F}
  1754. defines the following operation:
  1755. @table @code
  1756. @item cl_RA rational (const @var{type}& x)
  1757. @cindex @code{rational ()}
  1758. Returns the value of @code{x} as an exact number. If @code{x} is already
  1759. an exact number, this is @code{x}. If @code{x} is a floating-point number,
  1760. the value is a rational number whose denominator is a power of 2.
  1761. @end table
  1762. In order to convert back, say, @code{(cl_F)(cl_R)"1/3"} to @code{1/3}, there is
  1763. the function
  1764. @table @code
  1765. @item cl_RA rationalize (const cl_R& x)
  1766. @cindex @code{rationalize ()}
  1767. If @code{x} is a floating-point number, it actually represents an interval
  1768. of real numbers, and this function returns the rational number with
  1769. smallest denominator (and smallest numerator, in magnitude)
  1770. which lies in this interval.
  1771. If @code{x} is already an exact number, this function returns @code{x}.
  1772. @end table
  1773. If @code{x} is any float, one has
  1774. @itemize @asis
  1775. @item
  1776. @code{cl_float(rational(x),x) = x}
  1777. @item
  1778. @code{cl_float(rationalize(x),x) = x}
  1779. @end itemize
  1780. @section Random number generators
  1781. A random generator is a machine which produces (pseudo-)random numbers.
  1782. The include file @code{<cl_random.h>} defines a class @code{cl_random_state}
  1783. which contains the state of a random generator. If you make a copy
  1784. of the random number generator, the original one and the copy will produce
  1785. the same sequence of random numbers.
  1786. The following functions return (pseudo-)random numbers in different formats.
  1787. Calling one of these modifies the state of the random number generator in
  1788. a complicated but deterministic way.
  1789. The global variable
  1790. @cindex @code{cl_random_state}
  1791. @cindex @code{cl_default_random_state}
  1792. @example
  1793. cl_random_state cl_default_random_state
  1794. @end example
  1795. contains a default random number generator. It is used when the functions
  1796. below are called without @code{cl_random_state} argument.
  1797. @table @code
  1798. @item uint32 random32 (cl_random_state& randomstate)
  1799. @itemx uint32 random32 ()
  1800. @cindex @code{random32 ()}
  1801. Returns a random unsigned 32-bit number. All bits are equally random.
  1802. @item cl_I random_I (cl_random_state& randomstate, const cl_I& n)
  1803. @itemx cl_I random_I (const cl_I& n)
  1804. @cindex @code{random_I ()}
  1805. @code{n} must be an integer > 0. This function returns a random integer @code{x}
  1806. in the range @code{0 <= x < n}.
  1807. @item cl_F random_F (cl_random_state& randomstate, const cl_F& n)
  1808. @itemx cl_F random_F (const cl_F& n)
  1809. @cindex @code{random_F ()}
  1810. @code{n} must be a float > 0. This function returns a random floating-point
  1811. number of the same format as @code{n} in the range @code{0 <= x < n}.
  1812. @item cl_R random_R (cl_random_state& randomstate, const cl_R& n)
  1813. @itemx cl_R random_R (const cl_R& n)
  1814. @cindex @code{random_R ()}
  1815. Behaves like @code{random_I} if @code{n} is an integer and like @code{random_F}
  1816. if @code{n} is a float.
  1817. @end table
  1818. @section Obfuscating operators
  1819. @cindex modifying operators
  1820. The modifying C/C++ operators @code{+=}, @code{-=}, @code{*=}, @code{/=},
  1821. @code{&=}, @code{|=}, @code{^=}, @code{<<=}, @code{>>=}
  1822. are not available by default because their
  1823. use tends to make programs unreadable. It is trivial to get away without
  1824. them. However, if you feel that you absolutely need these operators
  1825. to get happy, then add
  1826. @example
  1827. #define WANT_OBFUSCATING_OPERATORS
  1828. @end example
  1829. @cindex @code{WANT_OBFUSCATING_OPERATORS}
  1830. to the beginning of your source files, before the inclusion of any CLN
  1831. include files. This flag will enable the following operators:
  1832. For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA},
  1833. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:
  1834. @table @code
  1835. @item @var{type}& operator += (@var{type}&, const @var{type}&)
  1836. @cindex @code{operator += ()}
  1837. @itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
  1838. @cindex @code{operator -= ()}
  1839. @itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
  1840. @cindex @code{operator *= ()}
  1841. @itemx @var{type}& operator /= (@var{type}&, const @var{type}&)
  1842. @cindex @code{operator /= ()}
  1843. @end table
  1844. For the class @code{cl_I}:
  1845. @table @code
  1846. @item @var{type}& operator += (@var{type}&, const @var{type}&)
  1847. @itemx @var{type}& operator -= (@var{type}&, const @var{type}&)
  1848. @itemx @var{type}& operator *= (@var{type}&, const @var{type}&)
  1849. @itemx @var{type}& operator &= (@var{type}&, const @var{type}&)
  1850. @cindex @code{operator &= ()}
  1851. @itemx @var{type}& operator |= (@var{type}&, const @var{type}&)
  1852. @cindex @code{operator |= ()}
  1853. @itemx @var{type}& operator ^= (@var{type}&, const @var{type}&)
  1854. @cindex @code{operator ^= ()}
  1855. @itemx @var{type}& operator <<= (@var{type}&, const @var{type}&)
  1856. @cindex @code{operator <<= ()}
  1857. @itemx @var{type}& operator >>= (@var{type}&, const @var{type}&)
  1858. @cindex @code{operator >>= ()}
  1859. @end table
  1860. For the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  1861. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}:
  1862. @table @code
  1863. @item @var{type}& operator ++ (@var{type}& x)
  1864. @cindex @code{operator ++ ()}
  1865. The prefix operator @code{++x}.
  1866. @item void operator ++ (@var{type}& x, int)
  1867. The postfix operator @code{x++}.
  1868. @item @var{type}& operator -- (@var{type}& x)
  1869. @cindex @code{operator -- ()}
  1870. The prefix operator @code{--x}.
  1871. @item void operator -- (@var{type}& x, int)
  1872. The postfix operator @code{x--}.
  1873. @end table
  1874. Note that by using these obfuscating operators, you wouldn't gain efficiency:
  1875. In CLN @samp{x += y;} is exactly the same as @samp{x = x+y;}, not more
  1876. efficient.
  1877. @chapter Input/Output
  1878. @cindex Input/Output
  1879. @section Internal and printed representation
  1880. @cindex representation
  1881. All computations deal with the internal representations of the numbers.
  1882. Every number has an external representation as a sequence of ASCII characters.
  1883. Several external representations may denote the same number, for example,
  1884. "20.0" and "20.000".
  1885. Converting an internal to an external representation is called ``printing'',
  1886. @cindex printing
  1887. converting an external to an internal representation is called ``reading''.
  1888. @cindex reading
  1889. In CLN, it is always true that conversion of an internal to an external
  1890. representation and then back to an internal representation will yield the
  1891. same internal representation. Symbolically: @code{read(print(x)) == x}.
  1892. This is called ``print-read consistency''.
  1893. Different types of numbers have different external representations (case
  1894. is insignificant):
  1895. @table @asis
  1896. @item Integers
  1897. External representation: @var{sign}@{@var{digit}@}+. The reader also accepts the
  1898. Common Lisp syntaxes @var{sign}@{@var{digit}@}+@code{.} with a trailing dot
  1899. for decimal integers
  1900. and the @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes.
  1901. @item Rational numbers
  1902. External representation: @var{sign}@{@var{digit}@}+@code{/}@{@var{digit}@}+.
  1903. The @code{#@var{n}R}, @code{#b}, @code{#o}, @code{#x} prefixes are allowed
  1904. here as well.
  1905. @item Floating-point numbers
  1906. External representation: @var{sign}@{@var{digit}@}*@var{exponent} or
  1907. @var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}*@var{exponent} or
  1908. @var{sign}@{@var{digit}@}*@code{.}@{@var{digit}@}+. A precision specifier
  1909. of the form _@var{prec} may be appended. There must be at least
  1910. one digit in the non-exponent part. The exponent has the syntax
  1911. @var{expmarker} @var{expsign} @{@var{digit}@}+.
  1912. The exponent marker is
  1913. @itemize @asis
  1914. @item
  1915. @samp{s} for short-floats,
  1916. @item
  1917. @samp{f} for single-floats,
  1918. @item
  1919. @samp{d} for double-floats,
  1920. @item
  1921. @samp{L} for long-floats,
  1922. @end itemize
  1923. or @samp{e}, which denotes a default float format. The precision specifying
  1924. suffix has the syntax _@var{prec} where @var{prec} denotes the number of
  1925. valid mantissa digits (in decimal, excluding leading zeroes), cf. also
  1926. function @samp{cl_float_format}.
  1927. @item Complex numbers
  1928. External representation:
  1929. @itemize @asis
  1930. @item
  1931. In algebraic notation: @code{@var{realpart}+@var{imagpart}i}. Of course,
  1932. if @var{imagpart} is negative, its printed representation begins with
  1933. a @samp{-}, and the @samp{+} between @var{realpart} and @var{imagpart}
  1934. may be omitted. Note that this notation cannot be used when the @var{imagpart}
  1935. is rational and the rational number's base is >18, because the @samp{i}
  1936. is then read as a digit.
  1937. @item
  1938. In Common Lisp notation: @code{#C(@var{realpart} @var{imagpart})}.
  1939. @end itemize
  1940. @end table
  1941. @section Input functions
  1942. Including @code{<cl_io.h>} defines a type @code{cl_istream}, which is
  1943. the type of the first argument to all input functions. Unless you build
  1944. and use CLN with the macro CL_IO_STDIO being defined, @code{cl_istream}
  1945. is the same as @code{istream&}.
  1946. The variable
  1947. @itemize @asis
  1948. @item
  1949. @code{cl_istream cl_stdin}
  1950. @end itemize
  1951. contains the standard input stream.
  1952. These are the simple input functions:
  1953. @table @code
  1954. @item int freadchar (cl_istream stream)
  1955. Reads a character from @code{stream}. Returns @code{cl_EOF} (not a @samp{char}!)
  1956. if the end of stream was encountered or an error occurred.
  1957. @item int funreadchar (cl_istream stream, int c)
  1958. Puts back @code{c} onto @code{stream}. @code{c} must be the result of the
  1959. last @code{freadchar} operation on @code{stream}.
  1960. @end table
  1961. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  1962. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  1963. defines, in @code{<cl_@var{type}_io.h>}, the following input function:
  1964. @table @code
  1965. @item cl_istream operator>> (cl_istream stream, @var{type}& result)
  1966. Reads a number from @code{stream} and stores it in the @code{result}.
  1967. @end table
  1968. The most flexible input functions, defined in @code{<cl_@var{type}_io.h>},
  1969. are the following:
  1970. @table @code
  1971. @item cl_N read_complex (cl_istream stream, const cl_read_flags& flags)
  1972. @itemx cl_R read_real (cl_istream stream, const cl_read_flags& flags)
  1973. @itemx cl_F read_float (cl_istream stream, const cl_read_flags& flags)
  1974. @itemx cl_RA read_rational (cl_istream stream, const cl_read_flags& flags)
  1975. @itemx cl_I read_integer (cl_istream stream, const cl_read_flags& flags)
  1976. Reads a number from @code{stream}. The @code{flags} are parameters which
  1977. affect the input syntax. Whitespace before the number is silently skipped.
  1978. @item cl_N read_complex (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1979. @itemx cl_R read_real (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1980. @itemx cl_F read_float (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1981. @itemx cl_RA read_rational (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1982. @itemx cl_I read_integer (const cl_read_flags& flags, const char * string, const char * string_limit, const char * * end_of_parse)
  1983. Reads a number from a string in memory. The @code{flags} are parameters which
  1984. affect the input syntax. The string starts at @code{string} and ends at
  1985. @code{string_limit} (exclusive limit). @code{string_limit} may also be
  1986. @code{NULL}, denoting the entire string, i.e. equivalent to
  1987. @code{string_limit = string + strlen(string)}. If @code{end_of_parse} is
  1988. @code{NULL}, the string in memory must contain exactly one number and nothing
  1989. more, else a fatal error will be signalled. If @code{end_of_parse}
  1990. is not @code{NULL}, @code{*end_of_parse} will be assigned a pointer past
  1991. the last parsed character (i.e. @code{string_limit} if nothing came after
  1992. the number). Whitespace is not allowed.
  1993. @end table
  1994. The structure @code{cl_read_flags} contains the following fields:
  1995. @table @code
  1996. @item cl_read_syntax_t syntax
  1997. The possible results of the read operation. Possible values are
  1998. @code{syntax_number}, @code{syntax_real}, @code{syntax_rational},
  1999. @code{syntax_integer}, @code{syntax_float}, @code{syntax_sfloat},
  2000. @code{syntax_ffloat}, @code{syntax_dfloat}, @code{syntax_lfloat}.
  2001. @item cl_read_lsyntax_t lsyntax
  2002. Specifies the language-dependent syntax variant for the read operation.
  2003. Possible values are
  2004. @table @code
  2005. @item lsyntax_standard
  2006. accept standard algebraic notation only, no complex numbers,
  2007. @item lsyntax_algebraic
  2008. accept the algebraic notation @code{@var{x}+@var{y}i} for complex numbers,
  2009. @item lsyntax_commonlisp
  2010. accept the @code{#b}, @code{#o}, @code{#x} syntaxes for binary, octal,
  2011. hexadecimal numbers,
  2012. @code{#@var{base}R} for rational numbers in a given base,
  2013. @code{#c(@var{realpart} @var{imagpart})} for complex numbers,
  2014. @item lsyntax_all
  2015. accept all of these extensions.
  2016. @end table
  2017. @item unsigned int rational_base
  2018. The base in which rational numbers are read.
  2019. @item cl_float_format_t float_flags.default_float_format
  2020. The float format used when reading floats with exponent marker @samp{e}.
  2021. @item cl_float_format_t float_flags.default_lfloat_format
  2022. The float format used when reading floats with exponent marker @samp{l}.
  2023. @item cl_boolean float_flags.mantissa_dependent_float_format
  2024. When this flag is true, floats specified with more digits than corresponding
  2025. to the exponent marker they contain, but without @var{_nnn} suffix, will get a
  2026. precision corresponding to their number of significant digits.
  2027. @end table
  2028. @section Output functions
  2029. Including @code{<cl_io.h>} defines a type @code{cl_ostream}, which is
  2030. the type of the first argument to all output functions. Unless you build
  2031. and use CLN with the macro CL_IO_STDIO being defined, @code{cl_ostream}
  2032. is the same as @code{ostream&}.
  2033. The variable
  2034. @itemize @asis
  2035. @item
  2036. @code{cl_ostream cl_stdout}
  2037. @end itemize
  2038. contains the standard output stream.
  2039. The variable
  2040. @itemize @asis
  2041. @item
  2042. @code{cl_ostream cl_stderr}
  2043. @end itemize
  2044. contains the standard error output stream.
  2045. These are the simple output functions:
  2046. @table @code
  2047. @item void fprintchar (cl_ostream stream, char c)
  2048. Prints the character @code{x} literally on the @code{stream}.
  2049. @item void fprint (cl_ostream stream, const char * string)
  2050. Prints the @code{string} literally on the @code{stream}.
  2051. @item void fprintdecimal (cl_ostream stream, int x)
  2052. @itemx void fprintdecimal (cl_ostream stream, const cl_I& x)
  2053. Prints the integer @code{x} in decimal on the @code{stream}.
  2054. @item void fprintbinary (cl_ostream stream, const cl_I& x)
  2055. Prints the integer @code{x} in binary (base 2, without prefix)
  2056. on the @code{stream}.
  2057. @item void fprintoctal (cl_ostream stream, const cl_I& x)
  2058. Prints the integer @code{x} in octal (base 8, without prefix)
  2059. on the @code{stream}.
  2060. @item void fprinthexadecimal (cl_ostream stream, const cl_I& x)
  2061. Prints the integer @code{x} in hexadecimal (base 16, without prefix)
  2062. on the @code{stream}.
  2063. @end table
  2064. Each of the classes @code{cl_N}, @code{cl_R}, @code{cl_RA}, @code{cl_I},
  2065. @code{cl_F}, @code{cl_SF}, @code{cl_FF}, @code{cl_DF}, @code{cl_LF}
  2066. defines, in @code{<cl_@var{type}_io.h>}, the following output functions:
  2067. @table @code
  2068. @item void fprint (cl_ostream stream, const @var{type}& x)
  2069. @itemx cl_ostream operator<< (cl_ostream stream, const @var{type}& x)
  2070. Prints the number @code{x} on the @code{stream}. The output may depend
  2071. on the global printer settings in the variable @code{cl_default_print_flags}.
  2072. The @code{ostream} flags and settings (flags, width and locale) are
  2073. ignored.
  2074. @end table
  2075. The most flexible output function, defined in @code{<cl_@var{type}_io.h>},
  2076. are the following:
  2077. @example
  2078. void print_complex (cl_ostream stream, const cl_print_flags& flags,
  2079. const cl_N& z);
  2080. void print_real (cl_ostream stream, const cl_print_flags& flags,
  2081. const cl_R& z);
  2082. void print_float (cl_ostream stream, const cl_print_flags& flags,
  2083. const cl_F& z);
  2084. void print_rational (cl_ostream stream, const cl_print_flags& flags,
  2085. const cl_RA& z);
  2086. void print_integer (cl_ostream stream, const cl_print_flags& flags,
  2087. const cl_I& z);
  2088. @end example
  2089. Prints the number @code{x} on the @code{stream}. The @code{flags} are
  2090. parameters which affect the output.
  2091. The structure type @code{cl_print_flags} contains the following fields:
  2092. @table @code
  2093. @item unsigned int rational_base
  2094. The base in which rational numbers are printed. Default is @code{10}.
  2095. @item cl_boolean rational_readably
  2096. If this flag is true, rational numbers are printed with radix specifiers in
  2097. Common Lisp syntax (@code{#@var{n}R} or @code{#b} or @code{#o} or @code{#x}
  2098. prefixes, trailing dot). Default is false.
  2099. @item cl_boolean float_readably
  2100. If this flag is true, type specific exponent markers have precedence over 'E'.
  2101. Default is false.
  2102. @item cl_float_format_t default_float_format
  2103. Floating point numbers of this format will be printed using the 'E' exponent
  2104. marker. Default is @code{cl_float_format_ffloat}.
  2105. @item cl_boolean complex_readably
  2106. If this flag is true, complex numbers will be printed using the Common Lisp
  2107. syntax @code{#C(@var{realpart} @var{imagpart})}. Default is false.
  2108. @item cl_string univpoly_varname
  2109. Univariate polynomials with no explicit indeterminate name will be printed
  2110. using this variable name. Default is @code{"x"}.
  2111. @end table
  2112. The global variable @code{cl_default_print_flags} contains the default values,
  2113. used by the function @code{fprint}.
  2114. @chapter Rings
  2115. CLN has a class of abstract rings.
  2116. @example
  2117. Ring
  2118. cl_ring
  2119. <cl_ring.h>
  2120. @end example
  2121. Rings can be compared for equality:
  2122. @table @code
  2123. @item bool operator== (const cl_ring&, const cl_ring&)
  2124. @itemx bool operator!= (const cl_ring&, const cl_ring&)
  2125. These compare two rings for equality.
  2126. @end table
  2127. Given a ring @code{R}, the following members can be used.
  2128. @table @code
  2129. @item void R->fprint (cl_ostream stream, const cl_ring_element& x)
  2130. @itemx cl_boolean R->equal (const cl_ring_element& x, const cl_ring_element& y)
  2131. @itemx cl_ring_element R->zero ()
  2132. @itemx cl_boolean R->zerop (const cl_ring_element& x)
  2133. @itemx cl_ring_element R->plus (const cl_ring_element& x, const cl_ring_element& y)
  2134. @itemx cl_ring_element R->minus (const cl_ring_element& x, const cl_ring_element& y)
  2135. @itemx cl_ring_element R->uminus (const cl_ring_element& x)
  2136. @itemx cl_ring_element R->one ()
  2137. @itemx cl_ring_element R->canonhom (const cl_I& x)
  2138. @itemx cl_ring_element R->mul (const cl_ring_element& x, const cl_ring_element& y)
  2139. @itemx cl_ring_element R->square (const cl_ring_element& x)
  2140. @itemx cl_ring_element R->expt_pos (const cl_ring_element& x, const cl_I& y)
  2141. @end table
  2142. The following rings are built-in.
  2143. @table @code
  2144. @item cl_null_ring cl_0_ring
  2145. The null ring, containing only zero.
  2146. @item cl_complex_ring cl_C_ring
  2147. The ring of complex numbers. This corresponds to the type @code{cl_N}.
  2148. @item cl_real_ring cl_R_ring
  2149. The ring of real numbers. This corresponds to the type @code{cl_R}.
  2150. @item cl_rational_ring cl_RA_ring
  2151. The ring of rational numbers. This corresponds to the type @code{cl_RA}.
  2152. @item cl_integer_ring cl_I_ring
  2153. The ring of integers. This corresponds to the type @code{cl_I}.
  2154. @end table
  2155. Type tests can be performed for any of @code{cl_C_ring}, @code{cl_R_ring},
  2156. @code{cl_RA_ring}, @code{cl_I_ring}:
  2157. @table @code
  2158. @item cl_boolean instanceof (const cl_number& x, const cl_number_ring& R)
  2159. @cindex @code{instanceof ()}
  2160. Tests whether the given number is an element of the number ring R.
  2161. @end table
  2162. @chapter Modular integers
  2163. @cindex modular integer
  2164. @section Modular integer rings
  2165. @cindex ring
  2166. CLN implements modular integers, i.e. integers modulo a fixed integer N.
  2167. The modulus is explicitly part of every modular integer. CLN doesn't
  2168. allow you to (accidentally) mix elements of different modular rings,
  2169. e.g. @code{(3 mod 4) + (2 mod 5)} will result in a runtime error.
  2170. (Ideally one would imagine a generic data type @code{cl_MI(N)}, but C++
  2171. doesn't have generic types. So one has to live with runtime checks.)
  2172. The class of modular integer rings is
  2173. @example
  2174. Ring
  2175. cl_ring
  2176. <cl_ring.h>
  2177. |
  2178. |
  2179. Modular integer ring
  2180. cl_modint_ring
  2181. <cl_modinteger.h>
  2182. @end example
  2183. @cindex @code{cl_modint_ring}
  2184. and the class of all modular integers (elements of modular integer rings) is
  2185. @example
  2186. Modular integer
  2187. cl_MI
  2188. <cl_modinteger.h>
  2189. @end example
  2190. Modular integer rings are constructed using the function
  2191. @table @code
  2192. @item cl_modint_ring cl_find_modint_ring (const cl_I& N)
  2193. @cindex @code{cl_find_modint_ring ()}
  2194. This function returns the modular ring @samp{Z/NZ}. It takes care
  2195. of finding out about special cases of @code{N}, like powers of two
  2196. and odd numbers for which Montgomery multiplication will be a win,
  2197. @cindex Montgomery multiplication
  2198. and precomputes any necessary auxiliary data for computing modulo @code{N}.
  2199. There is a cache table of rings, indexed by @code{N} (or, more precisely,
  2200. by @code{abs(N)}). This ensures that the precomputation costs are reduced
  2201. to a minimum.
  2202. @end table
  2203. Modular integer rings can be compared for equality:
  2204. @table @code
  2205. @item bool operator== (const cl_modint_ring&, const cl_modint_ring&)
  2206. @cindex @code{operator == ()}
  2207. @itemx bool operator!= (const cl_modint_ring&, const cl_modint_ring&)
  2208. @cindex @code{operator != ()}
  2209. These compare two modular integer rings for equality. Two different calls
  2210. to @code{cl_find_modint_ring} with the same argument necessarily return the
  2211. same ring because it is memoized in the cache table.
  2212. @end table
  2213. @section Functions on modular integers
  2214. Given a modular integer ring @code{R}, the following members can be used.
  2215. @table @code
  2216. @item cl_I R->modulus
  2217. @cindex @code{modulus}
  2218. This is the ring's modulus, normalized to be nonnegative: @code{abs(N)}.
  2219. @item cl_MI R->zero()
  2220. @cindex @code{zero ()}
  2221. This returns @code{0 mod N}.
  2222. @item cl_MI R->one()
  2223. @cindex @code{one ()}
  2224. This returns @code{1 mod N}.
  2225. @item cl_MI R->canonhom (const cl_I& x)
  2226. @cindex @code{canonhom ()}
  2227. This returns @code{x mod N}.
  2228. @item cl_I R->retract (const cl_MI& x)
  2229. @cindex @code{retract ()}
  2230. This is a partial inverse function to @code{R->canonhom}. It returns the
  2231. standard representative (@code{>=0}, @code{<N}) of @code{x}.
  2232. @item cl_MI R->random(cl_random_state& randomstate)
  2233. @itemx cl_MI R->random()
  2234. @cindex @code{random ()}
  2235. This returns a random integer modulo @code{N}.
  2236. @end table
  2237. The following operations are defined on modular integers.
  2238. @table @code
  2239. @item cl_modint_ring x.ring ()
  2240. @cindex @code{ring ()}
  2241. Returns the ring to which the modular integer @code{x} belongs.
  2242. @item cl_MI operator+ (const cl_MI&, const cl_MI&)
  2243. @cindex @code{operator + ()}
  2244. Returns the sum of two modular integers. One of the arguments may also
  2245. be a plain integer.
  2246. @item cl_MI operator- (const cl_MI&, const cl_MI&)
  2247. @cindex @code{operator - ()}
  2248. Returns the difference of two modular integers. One of the arguments may also
  2249. be a plain integer.
  2250. @item cl_MI operator- (const cl_MI&)
  2251. Returns the negative of a modular integer.
  2252. @item cl_MI operator* (const cl_MI&, const cl_MI&)
  2253. @cindex @code{operator * ()}
  2254. Returns the product of two modular integers. One of the arguments may also
  2255. be a plain integer.
  2256. @item cl_MI square (const cl_MI&)
  2257. @cindex @code{square ()}
  2258. Returns the square of a modular integer.
  2259. @item cl_MI recip (const cl_MI& x)
  2260. @cindex @code{recip ()}
  2261. Returns the reciprocal @code{x^-1} of a modular integer @code{x}. @code{x}
  2262. must be coprime to the modulus, otherwise an error message is issued.
  2263. @item cl_MI div (const cl_MI& x, const cl_MI& y)
  2264. @cindex @code{div ()}
  2265. Returns the quotient @code{x*y^-1} of two modular integers @code{x}, @code{y}.
  2266. @code{y} must be coprime to the modulus, otherwise an error message is issued.
  2267. @item cl_MI expt_pos (const cl_MI& x, const cl_I& y)
  2268. @cindex @code{expt_pos ()}
  2269. @code{y} must be > 0. Returns @code{x^y}.
  2270. @item cl_MI expt (const cl_MI& x, const cl_I& y)
  2271. @cindex @code{expt ()}
  2272. Returns @code{x^y}. If @code{y} is negative, @code{x} must be coprime to the
  2273. modulus, else an error message is issued.
  2274. @item cl_MI operator<< (const cl_MI& x, const cl_I& y)
  2275. @cindex @code{operator << ()}
  2276. Returns @code{x*2^y}.
  2277. @item cl_MI operator>> (const cl_MI& x, const cl_I& y)
  2278. @cindex @code{operator >> ()}
  2279. Returns @code{x*2^-y}. When @code{y} is positive, the modulus must be odd,
  2280. or an error message is issued.
  2281. @item bool operator== (const cl_MI&, const cl_MI&)
  2282. @cindex @code{operator == ()}
  2283. @itemx bool operator!= (const cl_MI&, const cl_MI&)
  2284. @cindex @code{operator != ()}
  2285. Compares two modular integers, belonging to the same modular integer ring,
  2286. for equality.
  2287. @item cl_boolean zerop (const cl_MI& x)
  2288. @cindex @code{zerop ()}
  2289. Returns true if @code{x} is @code{0 mod N}.
  2290. @end table
  2291. The following output functions are defined (see also the chapter on
  2292. input/output).
  2293. @table @code
  2294. @item void fprint (cl_ostream stream, const cl_MI& x)
  2295. @cindex @code{fprint ()}
  2296. @itemx cl_ostream operator<< (cl_ostream stream, const cl_MI& x)
  2297. @cindex @code{operator << ()}
  2298. Prints the modular integer @code{x} on the @code{stream}. The output may depend
  2299. on the global printer settings in the variable @code{cl_default_print_flags}.
  2300. @end table
  2301. @chapter Symbolic data types
  2302. @cindex symbolic type
  2303. CLN implements two symbolic (non-numeric) data types: strings and symbols.
  2304. @section Strings
  2305. @cindex string
  2306. The class
  2307. @example
  2308. String
  2309. cl_string
  2310. <cl_string.h>
  2311. @end example
  2312. implements immutable strings.
  2313. Strings are constructed through the following constructors:
  2314. @table @code
  2315. @item cl_string (const char * s)
  2316. @cindex @code{cl_string ()}
  2317. Returns an immutable copy of the (zero-terminated) C string @code{s}.
  2318. @item cl_string (const char * ptr, unsigned long len)
  2319. Returns an immutable copy of the @code{len} characters at
  2320. @code{ptr[0]}, @dots{}, @code{ptr[len-1]}. NUL characters are allowed.
  2321. @end table
  2322. The following functions are available on strings:
  2323. @table @code
  2324. @item operator =
  2325. Assignment from @code{cl_string} and @code{const char *}.
  2326. @item s.length()
  2327. @cindex @code{length ()}
  2328. @itemx strlen(s)
  2329. @cindex @code{strlen ()}
  2330. Returns the length of the string @code{s}.
  2331. @item s[i]
  2332. @cindex @code{operator [] ()}
  2333. Returns the @code{i}th character of the string @code{s}.
  2334. @code{i} must be in the range @code{0 <= i < s.length()}.
  2335. @item bool equal (const cl_string& s1, const cl_string& s2)
  2336. @cindex @code{equal ()}
  2337. Compares two strings for equality. One of the arguments may also be a
  2338. plain @code{const char *}.
  2339. @end table
  2340. @section Symbols
  2341. @cindex symbol
  2342. Symbols are uniquified strings: all symbols with the same name are shared.
  2343. This means that comparison of two symbols is fast (effectively just a pointer
  2344. comparison), whereas comparison of two strings must in the worst case walk
  2345. both strings until their end.
  2346. Symbols are used, for example, as tags for properties, as names of variables
  2347. in polynomial rings, etc.
  2348. Symbols are constructed through the following constructor:
  2349. @table @code
  2350. @item cl_symbol (const cl_string& s)
  2351. @cindex @code{cl_symbol ()}
  2352. Looks up or creates a new symbol with a given name.
  2353. @end table
  2354. The following operations are available on symbols:
  2355. @table @code
  2356. @item cl_string (const cl_symbol& sym)
  2357. Conversion to @code{cl_string}: Returns the string which names the symbol
  2358. @code{sym}.
  2359. @item bool equal (const cl_symbol& sym1, const cl_symbol& sym2)
  2360. @cindex @code{equal ()}
  2361. Compares two symbols for equality. This is very fast.
  2362. @end table
  2363. @chapter Univariate polynomials
  2364. @cindex polynomial
  2365. @cindex univariate polynomial
  2366. @section Univariate polynomial rings
  2367. CLN implements univariate polynomials (polynomials in one variable) over an
  2368. arbitrary ring. The indeterminate variable may be either unnamed (and will be
  2369. printed according to @code{cl_default_print_flags.univpoly_varname}, which
  2370. defaults to @samp{x}) or carry a given name. The base ring and the
  2371. indeterminate are explicitly part of every polynomial. CLN doesn't allow you to
  2372. (accidentally) mix elements of different polynomial rings, e.g.
  2373. @code{(a^2+1) * (b^3-1)} will result in a runtime error. (Ideally this should
  2374. return a multivariate polynomial, but they are not yet implemented in CLN.)
  2375. The classes of univariate polynomial rings are
  2376. @example
  2377. Ring
  2378. cl_ring
  2379. <cl_ring.h>
  2380. |
  2381. |
  2382. Univariate polynomial ring
  2383. cl_univpoly_ring
  2384. <cl_univpoly.h>
  2385. |
  2386. +----------------+-------------------+
  2387. | | |
  2388. Complex polynomial ring | Modular integer polynomial ring
  2389. cl_univpoly_complex_ring | cl_univpoly_modint_ring
  2390. <cl_univpoly_complex.h> | <cl_univpoly_modint.h>
  2391. |
  2392. +----------------+
  2393. | |
  2394. Real polynomial ring |
  2395. cl_univpoly_real_ring |
  2396. <cl_univpoly_real.h> |
  2397. |
  2398. +----------------+
  2399. | |
  2400. Rational polynomial ring |
  2401. cl_univpoly_rational_ring |
  2402. <cl_univpoly_rational.h> |
  2403. |
  2404. +----------------+
  2405. |
  2406. Integer polynomial ring
  2407. cl_univpoly_integer_ring
  2408. <cl_univpoly_integer.h>
  2409. @end example
  2410. and the corresponding classes of univariate polynomials are
  2411. @example
  2412. Univariate polynomial
  2413. cl_UP
  2414. <cl_univpoly.h>
  2415. |
  2416. +----------------+-------------------+
  2417. | | |
  2418. Complex polynomial | Modular integer polynomial
  2419. cl_UP_N | cl_UP_MI
  2420. <cl_univpoly_complex.h> | <cl_univpoly_modint.h>
  2421. |
  2422. +----------------+
  2423. | |
  2424. Real polynomial |
  2425. cl_UP_R |
  2426. <cl_univpoly_real.h> |
  2427. |
  2428. +----------------+
  2429. | |
  2430. Rational polynomial |
  2431. cl_UP_RA |
  2432. <cl_univpoly_rational.h> |
  2433. |
  2434. +----------------+
  2435. |
  2436. Integer polynomial
  2437. cl_UP_I
  2438. <cl_univpoly_integer.h>
  2439. @end example
  2440. Univariate polynomial rings are constructed using the functions
  2441. @table @code
  2442. @item cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R)
  2443. @itemx cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)
  2444. This function returns the polynomial ring @samp{R[X]}, unnamed or named.
  2445. @code{R} may be an arbitrary ring. This function takes care of finding out
  2446. about special cases of @code{R}, such as the rings of complex numbers,
  2447. real numbers, rational numbers, integers, or modular integer rings.
  2448. There is a cache table of rings, indexed by @code{R} and @code{varname}.
  2449. This ensures that two calls of this function with the same arguments will
  2450. return the same polynomial ring.
  2451. @itemx cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R)
  2452. @cindex @code{cl_find_univpoly_ring ()}
  2453. @itemx cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)
  2454. @itemx cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R)
  2455. @itemx cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)
  2456. @itemx cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R)
  2457. @itemx cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)
  2458. @itemx cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R)
  2459. @itemx cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)
  2460. @itemx cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R)
  2461. @itemx cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)
  2462. These functions are equivalent to the general @code{cl_find_univpoly_ring},
  2463. only the return type is more specific, according to the base ring's type.
  2464. @end table
  2465. @section Functions on univariate polynomials
  2466. Given a univariate polynomial ring @code{R}, the following members can be used.
  2467. @table @code
  2468. @item cl_ring R->basering()
  2469. @cindex @code{basering ()}
  2470. This returns the base ring, as passed to @samp{cl_find_univpoly_ring}.
  2471. @item cl_UP R->zero()
  2472. @cindex @code{zero ()}
  2473. This returns @code{0 in R}, a polynomial of degree -1.
  2474. @item cl_UP R->one()
  2475. @cindex @code{one ()}
  2476. This returns @code{1 in R}, a polynomial of degree <= 0.
  2477. @item cl_UP R->canonhom (const cl_I& x)
  2478. @cindex @code{canonhom ()}
  2479. This returns @code{x in R}, a polynomial of degree <= 0.
  2480. @item cl_UP R->monomial (const cl_ring_element& x, uintL e)
  2481. @cindex @code{monomial ()}
  2482. This returns a sparse polynomial: @code{x * X^e}, where @code{X} is the
  2483. indeterminate.
  2484. @item cl_UP R->create (sintL degree)
  2485. @cindex @code{create ()}
  2486. Creates a new polynomial with a given degree. The zero polynomial has degree
  2487. @code{-1}. After creating the polynomial, you should put in the coefficients,
  2488. using the @code{set_coeff} member function, and then call the @code{finalize}
  2489. member function.
  2490. @end table
  2491. The following are the only destructive operations on univariate polynomials.
  2492. @table @code
  2493. @item void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)
  2494. @cindex @code{set_coeff ()}
  2495. This changes the coefficient of @code{X^index} in @code{x} to be @code{y}.
  2496. After changing a polynomial and before applying any "normal" operation on it,
  2497. you should call its @code{finalize} member function.
  2498. @item void finalize (cl_UP& x)
  2499. @cindex @code{finalize ()}
  2500. This function marks the endpoint of destructive modifications of a polynomial.
  2501. It normalizes the internal representation so that subsequent computations have
  2502. less overhead. Doing normal computations on unnormalized polynomials may
  2503. produce wrong results or crash the program.
  2504. @end table
  2505. The following operations are defined on univariate polynomials.
  2506. @table @code
  2507. @item cl_univpoly_ring x.ring ()
  2508. @cindex @code{ring ()}
  2509. Returns the ring to which the univariate polynomial @code{x} belongs.
  2510. @item cl_UP operator+ (const cl_UP&, const cl_UP&)
  2511. @cindex @code{operator + ()}
  2512. Returns the sum of two univariate polynomials.
  2513. @item cl_UP operator- (const cl_UP&, const cl_UP&)
  2514. @cindex @code{operator - ()}
  2515. Returns the difference of two univariate polynomials.
  2516. @item cl_UP operator- (const cl_UP&)
  2517. Returns the negative of a univariate polynomial.
  2518. @item cl_UP operator* (const cl_UP&, const cl_UP&)
  2519. @cindex @code{operator * ()}
  2520. Returns the product of two univariate polynomials. One of the arguments may
  2521. also be a plain integer or an element of the base ring.
  2522. @item cl_UP square (const cl_UP&)
  2523. @cindex @code{square ()}
  2524. Returns the square of a univariate polynomial.
  2525. @item cl_UP expt_pos (const cl_UP& x, const cl_I& y)
  2526. @cindex @code{expt_pos ()}
  2527. @code{y} must be > 0. Returns @code{x^y}.
  2528. @item bool operator== (const cl_UP&, const cl_UP&)
  2529. @cindex @code{operator == ()}
  2530. @itemx bool operator!= (const cl_UP&, const cl_UP&)
  2531. @cindex @code{operator != ()}
  2532. Compares two univariate polynomials, belonging to the same univariate
  2533. polynomial ring, for equality.
  2534. @item cl_boolean zerop (const cl_UP& x)
  2535. @cindex @code{zerop ()}
  2536. Returns true if @code{x} is @code{0 in R}.
  2537. @item sintL degree (const cl_UP& x)
  2538. @cindex @code{degree ()}
  2539. Returns the degree of the polynomial. The zero polynomial has degree @code{-1}.
  2540. @item cl_ring_element coeff (const cl_UP& x, uintL index)
  2541. @cindex @code{coeff ()}
  2542. Returns the coefficient of @code{X^index} in the polynomial @code{x}.
  2543. @item cl_ring_element x (const cl_ring_element& y)
  2544. @cindex @code{operator () ()}
  2545. Evaluation: If @code{x} is a polynomial and @code{y} belongs to the base ring,
  2546. then @samp{x(y)} returns the value of the substitution of @code{y} into
  2547. @code{x}.
  2548. @item cl_UP deriv (const cl_UP& x)
  2549. @cindex @code{deriv ()}
  2550. Returns the derivative of the polynomial @code{x} with respect to the
  2551. indeterminate @code{X}.
  2552. @end table
  2553. The following output functions are defined (see also the chapter on
  2554. input/output).
  2555. @table @code
  2556. @item void fprint (cl_ostream stream, const cl_UP& x)
  2557. @cindex @code{fprint ()}
  2558. @itemx cl_ostream operator<< (cl_ostream stream, const cl_UP& x)
  2559. @cindex @code{operator << ()}
  2560. Prints the univariate polynomial @code{x} on the @code{stream}. The output may
  2561. depend on the global printer settings in the variable
  2562. @code{cl_default_print_flags}.
  2563. @end table
  2564. @section Special polynomials
  2565. The following functions return special polynomials.
  2566. @table @code
  2567. @item cl_UP_I cl_tschebychev (sintL n)
  2568. @cindex @code{cl_tschebychev ()}
  2569. @cindex Tschebychev polynomial
  2570. Returns the n-th Tchebychev polynomial (n >= 0).
  2571. @item cl_UP_I cl_hermite (sintL n)
  2572. @cindex @code{cl_hermite ()}
  2573. @cindex Hermite polynomial
  2574. Returns the n-th Hermite polynomial (n >= 0).
  2575. @item cl_UP_RA cl_legendre (sintL n)
  2576. @cindex @code{cl_legendre ()}
  2577. @cindex Legende polynomial
  2578. Returns the n-th Legendre polynomial (n >= 0).
  2579. @item cl_UP_I cl_laguerre (sintL n)
  2580. @cindex @code{cl_laguerre ()}
  2581. @cindex Laguerre polynomial
  2582. Returns the n-th Laguerre polynomial (n >= 0).
  2583. @end table
  2584. Information how to derive the differential equation satisfied by each
  2585. of these polynomials from their definition can be found in the
  2586. @code{doc/polynomial/} directory.
  2587. @chapter Internals
  2588. @section Why C++ ?
  2589. @cindex advocacy
  2590. Using C++ as an implementation language provides
  2591. @itemize @bullet
  2592. @item
  2593. Efficiency: It compiles to machine code.
  2594. @item
  2595. @cindex portability
  2596. Portability: It runs on all platforms supporting a C++ compiler. Because
  2597. of the availability of GNU C++, this includes all currently used 32-bit and
  2598. 64-bit platforms, independently of the quality of the vendor's C++ compiler.
  2599. @item
  2600. Type safety: The C++ compilers knows about the number types and complains if,
  2601. for example, you try to assign a float to an integer variable. However,
  2602. a drawback is that C++ doesn't know about generic types, hence a restriction
  2603. like that @code{operator+ (const cl_MI&, const cl_MI&)} requires that both
  2604. arguments belong to the same modular ring cannot be expressed as a compile-time
  2605. information.
  2606. @item
  2607. Algebraic syntax: The elementary operations @code{+}, @code{-}, @code{*},
  2608. @code{=}, @code{==}, ... can be used in infix notation, which is more
  2609. convenient than Lisp notation @samp{(+ x y)} or C notation @samp{add(x,y,&z)}.
  2610. @end itemize
  2611. With these language features, there is no need for two separate languages,
  2612. one for the implementation of the library and one in which the library's users
  2613. can program. This means that a prototype implementation of an algorithm
  2614. can be integrated into the library immediately after it has been tested and
  2615. debugged. No need to rewrite it in a low-level language after having prototyped
  2616. in a high-level language.
  2617. @section Memory efficiency
  2618. In order to save memory allocations, CLN implements:
  2619. @itemize @bullet
  2620. @item
  2621. Object sharing: An operation like @code{x+0} returns @code{x} without copying
  2622. it.
  2623. @item
  2624. @cindex garbage collection
  2625. @cindex reference counting
  2626. Garbage collection: A reference counting mechanism makes sure that any
  2627. number object's storage is freed immediately when the last reference to the
  2628. object is gone.
  2629. @item
  2630. Small integers are represented as immediate values instead of pointers
  2631. to heap allocated storage. This means that integers @code{> -2^29},
  2632. @code{< 2^29} don't consume heap memory, unless they were explicitly allocated
  2633. on the heap.
  2634. @end itemize
  2635. @section Speed efficiency
  2636. Speed efficiency is obtained by the combination of the following tricks
  2637. and algorithms:
  2638. @itemize @bullet
  2639. @item
  2640. Small integers, being represented as immediate values, don't require
  2641. memory access, just a couple of instructions for each elementary operation.
  2642. @item
  2643. The kernel of CLN has been written in assembly language for some CPUs
  2644. (@code{i386}, @code{m68k}, @code{sparc}, @code{mips}, @code{arm}).
  2645. @item
  2646. On all CPUs, CLN may be configured to use the superefficient low-level
  2647. routines from GNU GMP version 3.
  2648. @item
  2649. For large numbers, CLN uses, instead of the standard @code{O(N^2)}
  2650. algorithm, the Karatsuba multiplication, which is an
  2651. @iftex
  2652. @tex
  2653. $O(N^{1.6})$
  2654. @end tex
  2655. @end iftex
  2656. @ifinfo
  2657. @code{O(N^1.6)}
  2658. @end ifinfo
  2659. algorithm.
  2660. @item
  2661. For very large numbers (more than 12000 decimal digits), CLN uses
  2662. @iftex
  2663. Sch{@"o}nhage-Strassen
  2664. @cindex Sch{@"o}nhage-Strassen multiplication
  2665. @end iftex
  2666. @ifinfo
  2667. Sch�nhage-Strassen
  2668. @cindex Sch�nhage-Strassen multiplication
  2669. @end ifinfo
  2670. multiplication, which is an asymptotically optimal multiplication
  2671. algorithm.
  2672. @item
  2673. These fast multiplication algorithms also give improvements in the speed
  2674. of division and radix conversion.
  2675. @end itemize
  2676. @section Garbage collection
  2677. @cindex garbage collection
  2678. All the number classes are reference count classes: They only contain a pointer
  2679. to an object in the heap. Upon construction, assignment and destruction of
  2680. number objects, only the objects' reference count are manipulated.
  2681. Memory occupied by number objects are automatically reclaimed as soon as
  2682. their reference count drops to zero.
  2683. For number rings, another strategy is implemented: There is a cache of,
  2684. for example, the modular integer rings. A modular integer ring is destroyed
  2685. only if its reference count dropped to zero and the cache is about to be
  2686. resized. The effect of this strategy is that recently used rings remain
  2687. cached, whereas undue memory consumption through cached rings is avoided.
  2688. @chapter Using the library
  2689. For the following discussion, we will assume that you have installed
  2690. the CLN source in @code{$CLN_DIR} and built it in @code{$CLN_TARGETDIR}.
  2691. For example, for me it's @code{CLN_DIR="$HOME/cln"} and
  2692. @code{CLN_TARGETDIR="$HOME/cln/linuxelf"}. You might define these as
  2693. environment variables, or directly substitute the appropriate values.
  2694. @section Compiler options
  2695. @cindex compiler options
  2696. Until you have installed CLN in a public place, the following options are
  2697. needed:
  2698. When you compile CLN application code, add the flags
  2699. @example
  2700. -I$CLN_DIR/include -I$CLN_TARGETDIR/include
  2701. @end example
  2702. to the C++ compiler's command line (@code{make} variable CFLAGS or CXXFLAGS).
  2703. When you link CLN application code to form an executable, add the flags
  2704. @example
  2705. $CLN_TARGETDIR/src/libcln.a
  2706. @end example
  2707. to the C/C++ compiler's command line (@code{make} variable LIBS).
  2708. If you did a @code{make install}, the include files are installed in a
  2709. public directory (normally @code{/usr/local/include}), hence you don't
  2710. need special flags for compiling. The library has been installed to a
  2711. public directory as well (normally @code{/usr/local/lib}), hence when
  2712. linking a CLN application it is sufficient to give the flag @code{-lcln}.
  2713. @section Include files
  2714. @cindex include files
  2715. @cindex header files
  2716. Here is a summary of the include files and their contents.
  2717. @table @code
  2718. @item <cl_object.h>
  2719. General definitions, reference counting, garbage collection.
  2720. @item <cl_number.h>
  2721. The class cl_number.
  2722. @item <cl_complex.h>
  2723. Functions for class cl_N, the complex numbers.
  2724. @item <cl_real.h>
  2725. Functions for class cl_R, the real numbers.
  2726. @item <cl_float.h>
  2727. Functions for class cl_F, the floats.
  2728. @item <cl_sfloat.h>
  2729. Functions for class cl_SF, the short-floats.
  2730. @item <cl_ffloat.h>
  2731. Functions for class cl_FF, the single-floats.
  2732. @item <cl_dfloat.h>
  2733. Functions for class cl_DF, the double-floats.
  2734. @item <cl_lfloat.h>
  2735. Functions for class cl_LF, the long-floats.
  2736. @item <cl_rational.h>
  2737. Functions for class cl_RA, the rational numbers.
  2738. @item <cl_integer.h>
  2739. Functions for class cl_I, the integers.
  2740. @item <cl_io.h>
  2741. Input/Output.
  2742. @item <cl_complex_io.h>
  2743. Input/Output for class cl_N, the complex numbers.
  2744. @item <cl_real_io.h>
  2745. Input/Output for class cl_R, the real numbers.
  2746. @item <cl_float_io.h>
  2747. Input/Output for class cl_F, the floats.
  2748. @item <cl_sfloat_io.h>
  2749. Input/Output for class cl_SF, the short-floats.
  2750. @item <cl_ffloat_io.h>
  2751. Input/Output for class cl_FF, the single-floats.
  2752. @item <cl_dfloat_io.h>
  2753. Input/Output for class cl_DF, the double-floats.
  2754. @item <cl_lfloat_io.h>
  2755. Input/Output for class cl_LF, the long-floats.
  2756. @item <cl_rational_io.h>
  2757. Input/Output for class cl_RA, the rational numbers.
  2758. @item <cl_integer_io.h>
  2759. Input/Output for class cl_I, the integers.
  2760. @item <cl_input.h>
  2761. Flags for customizing input operations.
  2762. @item <cl_output.h>
  2763. Flags for customizing output operations.
  2764. @item <cl_malloc.h>
  2765. @code{cl_malloc_hook}, @code{cl_free_hook}.
  2766. @item <cl_abort.h>
  2767. @code{cl_abort}.
  2768. @item <cl_condition.h>
  2769. Conditions/exceptions.
  2770. @item <cl_string.h>
  2771. Strings.
  2772. @item <cl_symbol.h>
  2773. Symbols.
  2774. @item <cl_proplist.h>
  2775. Property lists.
  2776. @item <cl_ring.h>
  2777. General rings.
  2778. @item <cl_null_ring.h>
  2779. The null ring.
  2780. @item <cl_complex_ring.h>
  2781. The ring of complex numbers.
  2782. @item <cl_real_ring.h>
  2783. The ring of real numbers.
  2784. @item <cl_rational_ring.h>
  2785. The ring of rational numbers.
  2786. @item <cl_integer_ring.h>
  2787. The ring of integers.
  2788. @item <cl_numtheory.h>
  2789. Number threory functions.
  2790. @item <cl_modinteger.h>
  2791. Modular integers.
  2792. @item <cl_V.h>
  2793. Vectors.
  2794. @item <cl_GV.h>
  2795. General vectors.
  2796. @item <cl_GV_number.h>
  2797. General vectors over cl_number.
  2798. @item <cl_GV_complex.h>
  2799. General vectors over cl_N.
  2800. @item <cl_GV_real.h>
  2801. General vectors over cl_R.
  2802. @item <cl_GV_rational.h>
  2803. General vectors over cl_RA.
  2804. @item <cl_GV_integer.h>
  2805. General vectors over cl_I.
  2806. @item <cl_GV_modinteger.h>
  2807. General vectors of modular integers.
  2808. @item <cl_SV.h>
  2809. Simple vectors.
  2810. @item <cl_SV_number.h>
  2811. Simple vectors over cl_number.
  2812. @item <cl_SV_complex.h>
  2813. Simple vectors over cl_N.
  2814. @item <cl_SV_real.h>
  2815. Simple vectors over cl_R.
  2816. @item <cl_SV_rational.h>
  2817. Simple vectors over cl_RA.
  2818. @item <cl_SV_integer.h>
  2819. Simple vectors over cl_I.
  2820. @item <cl_SV_ringelt.h>
  2821. Simple vectors of general ring elements.
  2822. @item <cl_univpoly.h>
  2823. Univariate polynomials.
  2824. @item <cl_univpoly_integer.h>
  2825. Univariate polynomials over the integers.
  2826. @item <cl_univpoly_rational.h>
  2827. Univariate polynomials over the rational numbers.
  2828. @item <cl_univpoly_real.h>
  2829. Univariate polynomials over the real numbers.
  2830. @item <cl_univpoly_complex.h>
  2831. Univariate polynomials over the complex numbers.
  2832. @item <cl_univpoly_modint.h>
  2833. Univariate polynomials over modular integer rings.
  2834. @item <cl_timing.h>
  2835. Timing facilities.
  2836. @item <cln.h>
  2837. Includes all of the above.
  2838. @end table
  2839. @section An Example
  2840. A function which computes the nth Fibonacci number can be written as follows.
  2841. @cindex Fibonacci number
  2842. @example
  2843. #include <cl_integer.h>
  2844. #include <cl_real.h>
  2845. // Returns F_n, computed as the nearest integer to
  2846. // ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0.
  2847. const cl_I fibonacci (int n)
  2848. @{
  2849. // Need a precision of ((1+sqrt(5))/2)^-n.
  2850. cl_float_format_t prec = cl_float_format((int)(0.208987641*n+5));
  2851. cl_R sqrt5 = sqrt(cl_float(5,prec));
  2852. cl_R phi = (1+sqrt5)/2;
  2853. return round1( expt(phi,n)/sqrt5 );
  2854. @}
  2855. @end example
  2856. Let's explain what is going on in detail.
  2857. The include file @code{<cl_integer.h>} is necessary because the type
  2858. @code{cl_I} is used in the function, and the include file @code{<cl_real.h>}
  2859. is needed for the type @code{cl_R} and the floating point number functions.
  2860. The order of the include files does not matter.
  2861. Then comes the function declaration. The argument is an @code{int}, the
  2862. result an integer. The return type is defined as @samp{const cl_I}, not
  2863. simply @samp{cl_I}, because that allows the compiler to detect typos like
  2864. @samp{fibonacci(n) = 100}. It would be possible to declare the return
  2865. type as @code{const cl_R} (real number) or even @code{const cl_N} (complex
  2866. number). We use the most specialized possible return type because functions
  2867. which call @samp{fibonacci} will be able to profit from the compiler's type
  2868. analysis: Adding two integers is slightly more efficient than adding the
  2869. same objects declared as complex numbers, because it needs less type
  2870. dispatch. Also, when linking to CLN as a non-shared library, this minimizes
  2871. the size of the resulting executable program.
  2872. The result will be computed as expt(phi,n)/sqrt(5), rounded to the nearest
  2873. integer. In order to get a correct result, the absolute error should be less
  2874. than 1/2, i.e. the relative error should be less than sqrt(5)/(2*expt(phi,n)).
  2875. To this end, the first line computes a floating point precision for sqrt(5)
  2876. and phi.
  2877. Then sqrt(5) is computed by first converting the integer 5 to a floating point
  2878. number and than taking the square root. The converse, first taking the square
  2879. root of 5, and then converting to the desired precision, would not work in
  2880. CLN: The square root would be computed to a default precision (normally
  2881. single-float precision), and the following conversion could not help about
  2882. the lacking accuracy. This is because CLN is not a symbolic computer algebra
  2883. system and does not represent sqrt(5) in a non-numeric way.
  2884. The type @code{cl_R} for sqrt5 and, in the following line, phi is the only
  2885. possible choice. You cannot write @code{cl_F} because the C++ compiler can
  2886. only infer that @code{cl_float(5,prec)} is a real number. You cannot write
  2887. @code{cl_N} because a @samp{round1} does not exist for general complex
  2888. numbers.
  2889. When the function returns, all the local variables in the function are
  2890. automatically reclaimed (garbage collected). Only the result survives and
  2891. gets passed to the caller.
  2892. The file @code{fibonacci.cc} in the subdirectory @code{examples}
  2893. contains this implementation together with an even faster algorithm.
  2894. @section Debugging support
  2895. @cindex debugging
  2896. When debugging a CLN application with GNU @code{gdb}, two facilities are
  2897. available from the library:
  2898. @itemize @bullet
  2899. @item The library does type checks, range checks, consistency checks at
  2900. many places. When one of these fails, the function @code{cl_abort()} is
  2901. called. Its default implementation is to perform an @code{exit(1)}, so
  2902. you won't have a core dump. But for debugging, it is best to set a
  2903. breakpoint at this function:
  2904. @example
  2905. (gdb) break cl_abort
  2906. @end example
  2907. When this breakpoint is hit, look at the stack's backtrace:
  2908. @example
  2909. (gdb) where
  2910. @end example
  2911. @item The debugger's normal @code{print} command doesn't know about
  2912. CLN's types and therefore prints mostly useless hexadecimal addresses.
  2913. CLN offers a function @code{cl_print}, callable from the debugger,
  2914. for printing number objects. In order to get this function, you have
  2915. to define the macro @samp{CL_DEBUG} and then include all the header files
  2916. for which you want @code{cl_print} debugging support. For example:
  2917. @cindex @code{CL_DEBUG}
  2918. @example
  2919. #define CL_DEBUG
  2920. #include <cl_string.h>
  2921. @end example
  2922. Now, if you have in your program a variable @code{cl_string s}, and
  2923. inspect it under @code{gdb}, the output may look like this:
  2924. @example
  2925. (gdb) print s
  2926. $7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
  2927. word = 134568800@}@}, @}
  2928. (gdb) call cl_print(s)
  2929. (cl_string) ""
  2930. $8 = 134568800
  2931. @end example
  2932. Note that the output of @code{cl_print} goes to the program's error output,
  2933. not to gdb's standard output.
  2934. Note, however, that the above facility does not work with all CLN types,
  2935. only with number objects and similar. Therefore CLN offers a member function
  2936. @code{debug_print()} on all CLN types. The same macro @samp{CL_DEBUG}
  2937. is needed for this member function to be implemented. Under @code{gdb},
  2938. you call it like this:
  2939. @cindex @code{debug_print ()}
  2940. @example
  2941. (gdb) print s
  2942. $7 = @{<cl_gcpointer> = @{ = @{pointer = 0x8055b60, heappointer = 0x8055b60,
  2943. word = 134568800@}@}, @}
  2944. (gdb) call s.debug_print()
  2945. (cl_string) ""
  2946. (gdb) define cprint
  2947. >call ($1).debug_print()
  2948. >end
  2949. (gdb) cprint s
  2950. (cl_string) ""
  2951. @end example
  2952. Unfortunately, this feature does not seem to work under all circumstances.
  2953. @end itemize
  2954. @chapter Customizing
  2955. @cindex customizing
  2956. @section Error handling
  2957. When a fatal error occurs, an error message is output to the standard error
  2958. output stream, and the function @code{cl_abort} is called. The default
  2959. version of this function (provided in the library) terminates the application.
  2960. To catch such a fatal error, you need to define the function @code{cl_abort}
  2961. yourself, with the prototype
  2962. @example
  2963. #include <cl_abort.h>
  2964. void cl_abort (void);
  2965. @end example
  2966. @cindex @code{cl_abort ()}
  2967. This function must not return control to its caller.
  2968. @section Floating-point underflow
  2969. @cindex underflow
  2970. Floating point underflow denotes the situation when a floating-point number
  2971. is to be created which is so close to @code{0} that its exponent is too
  2972. low to be represented internally. By default, this causes a fatal error.
  2973. If you set the global variable
  2974. @example
  2975. cl_boolean cl_inhibit_floating_point_underflow
  2976. @end example
  2977. to @code{cl_true}, the error will be inhibited, and a floating-point zero
  2978. will be generated instead. The default value of
  2979. @code{cl_inhibit_floating_point_underflow} is @code{cl_false}.
  2980. @section Customizing I/O
  2981. The output of the function @code{fprint} may be customized by changing the
  2982. value of the global variable @code{cl_default_print_flags}.
  2983. @cindex @code{cl_default_print_flags}
  2984. @section Customizing the memory allocator
  2985. Every memory allocation of CLN is done through the function pointer
  2986. @code{cl_malloc_hook}. Freeing of this memory is done through the function
  2987. pointer @code{cl_free_hook}. The default versions of these functions,
  2988. provided in the library, call @code{malloc} and @code{free} and check
  2989. the @code{malloc} result against @code{NULL}.
  2990. If you want to provide another memory allocator, you need to define
  2991. the variables @code{cl_malloc_hook} and @code{cl_free_hook} yourself,
  2992. like this:
  2993. @example
  2994. #include <cl_malloc.h>
  2995. void* (*cl_malloc_hook) (size_t size) = @dots{};
  2996. void (*cl_free_hook) (void* ptr) = @dots{};
  2997. @end example
  2998. @cindex @code{cl_malloc_hook ()}
  2999. @cindex @code{cl_free_hook ()}
  3000. The @code{cl_malloc_hook} function must not return a @code{NULL} pointer.
  3001. It is not possible to change the memory allocator at runtime, because
  3002. it is already called at program startup by the constructors of some
  3003. global variables.
  3004. @c Indices
  3005. @unnumbered Index
  3006. @printindex my
  3007. @c Table of contents
  3008. @contents
  3009. @bye