|
|
// Computation of arctan(1/m) (m integer) to high precision.
#include "cln/integer.h"
#include "cln/rational.h"
#include "cln/real.h"
#include "cln/lfloat.h"
#include "cl_LF.h"
#include "cl_LF_tran.h"
#include "cl_alloca.h"
#include <stdlib.h>
#include <string.h>
#include "cln/timing.h"
#undef floor
#include <math.h>
#define floor cln_floor
using namespace cln;
// Method 1: atan(1/m) = sum(n=0..infty, (-1)^n/(2n+1) * 1/m^(2n+1))
// Method 2: atan(1/m) = sum(n=0..infty, 4^n*n!^2/(2n+1)! * m/(m^2+1)^(n+1))
// a. Using long floats. [N^2]
// b. Simulating long floats using integers. [N^2]
// c. Using integers, no binary splitting. [N^2]
// d. Using integers, with binary splitting. [FAST]
// Method 3: general built-in algorithm. [FAST]
// Method 1: atan(1/m) = sum(n=0..infty, (-1)^n/(2n+1) * 1/m^(2n+1))
const cl_LF atan_recip_1a (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_LF eps = scale_float(cl_I_to_LF(1,actuallen),-intDsize*(sintL)actuallen); var cl_I m2 = m*m; var cl_LF fterm = cl_I_to_LF(1,actuallen)/m; var cl_LF fsum = fterm; for (var uintL n = 1; fterm >= eps; n++) { fterm = fterm/m2; fterm = cl_LF_shortenwith(fterm,eps); if ((n % 2) == 0) fsum = fsum + LF_to_LF(fterm/(2*n+1),actuallen); else fsum = fsum - LF_to_LF(fterm/(2*n+1),actuallen); } return shorten(fsum,len); }
const cl_LF atan_recip_1b (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m; var cl_I fterm = floor1((cl_I)1 << (intDsize*actuallen), m); var cl_I fsum = fterm; for (var uintL n = 1; fterm > 0; n++) { fterm = floor1(fterm,m2); if ((n % 2) == 0) fsum = fsum + floor1(fterm,2*n+1); else fsum = fsum - floor1(fterm,2*n+1); } return scale_float(cl_I_to_LF(fsum,len),-intDsize*(sintL)actuallen); }
const cl_LF atan_recip_1c (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m; var sintL N = (sintL)(0.69314718*intDsize/2*actuallen/log(double_approx(m))) + 1; var cl_I num = 0, den = 1; // "lazy rational number"
for (sintL n = N-1; n>=0; n--) { // Multiply sum with 1/m^2:
den = den * m2; // Add (-1)^n/(2n+1):
if ((n % 2) == 0) num = num*(2*n+1) + den; else num = num*(2*n+1) - den; den = den*(2*n+1); } den = den*m; var cl_LF result = cl_I_to_LF(num,actuallen)/cl_I_to_LF(den,actuallen); return shorten(result,len); }
const cl_LF atan_recip_1d (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m; var uintL N = (uintL)(0.69314718*intDsize/2*actuallen/log(double_approx(m))) + 1; CL_ALLOCA_STACK; var cl_I* bv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var uintL n; for (n = 0; n < N; n++) { new (&bv[n]) cl_I ((n % 2) == 0 ? (cl_I)(2*n+1) : -(cl_I)(2*n+1)); new (&qv[n]) cl_I (n==0 ? m : m2); } var cl_rational_series series; series.av = NULL; series.bv = bv; series.pv = NULL; series.qv = qv; series.qsv = NULL; var cl_LF result = eval_rational_series(N,series,actuallen); for (n = 0; n < N; n++) { bv[n].~cl_I(); qv[n].~cl_I(); } return shorten(result,len); }
// Method 2: atan(1/m) = sum(n=0..infty, 4^n*n!^2/(2n+1)! * m/(m^2+1)^(n+1))
const cl_LF atan_recip_2a (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_LF eps = scale_float(cl_I_to_LF(1,actuallen),-intDsize*(sintL)actuallen); var cl_I m2 = m*m+1; var cl_LF fterm = cl_I_to_LF(m,actuallen)/m2; var cl_LF fsum = fterm; for (var uintL n = 1; fterm >= eps; n++) { fterm = The(cl_LF)((2*n)*fterm)/((2*n+1)*m2); fterm = cl_LF_shortenwith(fterm,eps); fsum = fsum + LF_to_LF(fterm,actuallen); } return shorten(fsum,len); }
const cl_LF atan_recip_2b (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m+1; var cl_I fterm = floor1((cl_I)m << (intDsize*actuallen), m2); var cl_I fsum = fterm; for (var uintL n = 1; fterm > 0; n++) { fterm = floor1((2*n)*fterm,(2*n+1)*m2); fsum = fsum + fterm; } return scale_float(cl_I_to_LF(fsum,len),-intDsize*(sintL)actuallen); }
const cl_LF atan_recip_2c (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m+1; var uintL N = (uintL)(0.69314718*intDsize*actuallen/log(double_approx(m2))) + 1; var cl_I num = 0, den = 1; // "lazy rational number"
for (uintL n = N; n>0; n--) { // Multiply sum with (2n)/(2n+1)(m^2+1):
num = num * (2*n); den = den * ((2*n+1)*m2); // Add 1:
num = num + den; } num = num*m; den = den*m2; var cl_LF result = cl_I_to_LF(num,actuallen)/cl_I_to_LF(den,actuallen); return shorten(result,len); }
const cl_LF atan_recip_2d (cl_I m, uintC len) { var uintC actuallen = len + 1; var cl_I m2 = m*m+1; var uintL N = (uintL)(0.69314718*intDsize*actuallen/log(double_approx(m2))) + 1; CL_ALLOCA_STACK; var cl_I* pv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var cl_I* qv = (cl_I*) cl_alloca(N*sizeof(cl_I)); var uintL n; new (&pv[0]) cl_I (m); new (&qv[0]) cl_I (m2); for (n = 1; n < N; n++) { new (&pv[n]) cl_I (2*n); new (&qv[n]) cl_I ((2*n+1)*m2); } var cl_rational_series series; series.av = NULL; series.bv = NULL; series.pv = pv; series.qv = qv; series.qsv = NULL; var cl_LF result = eval_rational_series(N,series,actuallen); for (n = 0; n < N; n++) { pv[n].~cl_I(); qv[n].~cl_I(); } return shorten(result,len); }
// Main program: Compute and display the timings.
int main (int argc, char * argv[]) { int repetitions = 1; if ((argc >= 3) && !strcmp(argv[1],"-r")) { repetitions = atoi(argv[2]); argc -= 2; argv += 2; } if (argc < 2) exit(1); cl_I m = (cl_I)argv[1]; uintL len = atoi(argv[2]); cl_LF p; ln(cl_I_to_LF(1000,len+10)); // fill cache
// Method 1.
{ CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_1a(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_1b(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_1c(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_1d(m,len); } } cout << p << endl; // Method 2.
{ CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_2a(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_2b(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_2c(m,len); } } cout << p << endl; { CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = atan_recip_2d(m,len); } } cout << p << endl; // Method 3.
{ CL_TIMING; for (int rep = repetitions; rep > 0; rep--) { p = The(cl_LF)(atan(cl_RA_to_LF(1/(cl_RA)m,len))); } } cout << p << endl; }
// Timings of the above algorithms, on an i486 33 MHz, running Linux.
// m = 390112. (For J�rg Arndt's formula (4.15).)
// N 1a 1b 1c 1d 2a 2b 2c 2d 3
// 10 0.0027 0.0018 0.0019 0.0019 0.0032 0.0022 0.0019 0.0019 0.0042
// 25 0.0085 0.0061 0.0058 0.0061 0.0095 0.0069 0.0056 0.0061 0.028
// 50 0.024 0.018 0.017 0.017 0.026 0.020 0.016 0.017 0.149
// 100 0.075 0.061 0.057 0.054 0.079 0.065 0.052 0.052 0.71
// 250 0.41 0.33 0.32 0.26 0.42 0.36 0.28 0.24 3.66
// 500 1.57 1.31 1.22 0.88 1.57 1.36 1.10 0.83 13.7
// 1000 6.08 5.14 4.56 2.76 6.12 5.36 4.06 2.58 45.5
// 2500 36.5 32.2 25.8 10.2 38.4 33.6 22.2 9.1 191
// 5000
// 10000
// asymp. N^2 N^2 N^2 FAST N^2 N^2 N^2 FAST FAST
//
// m = 319. (For J�rg Arndt's formula (4.7).)
// N 1a 1b 1c 1d 2a 2b 2c 2d 3
// 1000 6.06 4.40 9.17 3.82 5.29 3.90 7.50 3.53 50.3
//
// m = 18. (For J�rg Arndt's formula (4.4).)
// N 1a 1b 1c 1d 2a 2b 2c 2d 3
// 1000 11.8 9.0 22.3 6.0 10.2 7.7 17.1 5.7 54.3
|