You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

361 lines
7.0 KiB

25 years ago
  1. #This file was created by <bruno> Sun Feb 16 14:24:48 1997
  2. #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
  3. \lyxformat 2.10
  4. \textclass article
  5. \begin_preamble
  6. \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
  7. \def\mod#1{\allowbreak \mkern8mu \mathop{\operator@font mod}\,\,{#1}}
  8. \def\pmod#1{\allowbreak \mkern8mu \left({\mathop{\operator@font mod}\,\,{#1}}\right)}
  9. \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
  10. \end_preamble
  11. \language default
  12. \inputencoding latin1
  13. \fontscheme default
  14. \epsfig dvips
  15. \papersize a4paper
  16. \paperfontsize 12
  17. \baselinestretch 1.00
  18. \secnumdepth 3
  19. \tocdepth 3
  20. \paragraph_separation indent
  21. \quotes_language english
  22. \quotes_times 2
  23. \paperorientation portrait
  24. \papercolumns 0
  25. \papersides 1
  26. \paperpagestyle plain
  27. \layout Standard
  28. \cursor 47
  29. The Legendre polynomials
  30. \begin_inset Formula \( P_{n}(x) \)
  31. \end_inset
  32. are defined through
  33. \begin_inset Formula
  34. \[
  35. P_{n}(x)=\frac{1}{2^{n}n!}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{2}-1)^{n}\]
  36. \end_inset
  37. (For a motivation of the
  38. \begin_inset Formula \( 2^{n} \)
  39. \end_inset
  40. in the denominator, look at
  41. \begin_inset Formula \( P_{n}(x) \)
  42. \end_inset
  43. modulo an odd prime
  44. \begin_inset Formula \( p \)
  45. \end_inset
  46. , and observe that
  47. \begin_inset Formula \( P_{n}(x)\equiv P_{p-1-n}(x)\mod p \)
  48. \end_inset
  49. for
  50. \begin_inset Formula \( 0\leq n\leq p-1 \)
  51. \end_inset
  52. .
  53. This wouldn't hold if the
  54. \begin_inset Formula \( 2^{n} \)
  55. \end_inset
  56. factor in the denominator weren't present.
  57. )
  58. \layout Description
  59. Theorem:
  60. \layout Standard
  61. \begin_inset Formula \( P_{n}(x) \)
  62. \end_inset
  63. satisfies the recurrence relation
  64. \layout Standard
  65. \begin_inset Formula
  66. \[
  67. P_{0}(x)=1\]
  68. \end_inset
  69. \layout Standard
  70. \begin_inset Formula
  71. \[
  72. (n+1)\cdot P_{n+1}(x)=(2n+1)x\cdot P_{n}(x)-n\cdot P_{n-1}(x)\]
  73. \end_inset
  74. for
  75. \begin_inset Formula \( n\geq 0 \)
  76. \end_inset
  77. and the differential equation
  78. \begin_inset Formula \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \)
  79. \end_inset
  80. for all
  81. \begin_inset Formula \( n\geq 0 \)
  82. \end_inset
  83. .
  84. \layout Description
  85. Proof:
  86. \layout Standard
  87. Let
  88. \begin_inset Formula \( F:=\sum ^{\infty }_{n=0}P_{n}(x)\cdot z^{n} \)
  89. \end_inset
  90. be the generating function of the sequence of polynomials.
  91. It is the diagonal series of the power series
  92. \begin_inset Formula
  93. \[
  94. G:=\sum _{m,n=0}^{\infty }\frac{1}{2^{n}m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\cdot z^{n}\]
  95. \end_inset
  96. Because the Taylor series development theorem holds in formal power series
  97. rings (see [1], section 2.
  98. 16), we can simplify
  99. \begin_inset Formula
  100. \begin{eqnarray*}
  101. G & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\right) \cdot z^{n}\\
  102. & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( (x+y)^{2}-1\right) ^{n}\cdot z^{n}\\
  103. & = & \frac{1}{1-\frac{1}{2}\left( (x+y)^{2}-1\right) z}
  104. \end{eqnarray*}
  105. \end_inset
  106. We take over the terminology from the
  107. \begin_inset Quotes eld
  108. \end_inset
  109. diag_rational
  110. \begin_inset Quotes erd
  111. \end_inset
  112. paper; here
  113. \begin_inset Formula \( R=Q[x] \)
  114. \end_inset
  115. and
  116. \begin_inset Formula \( M=Q[[x]] \)
  117. \end_inset
  118. (or, if you like it better,
  119. \begin_inset Formula \( M=H(C) \)
  120. \end_inset
  121. , the algebra of functions holomorphic in the entire complex plane).
  122. \begin_inset Formula \( G\in M[[y,z]] \)
  123. \end_inset
  124. is rational; hence
  125. \begin_inset Formula \( F \)
  126. \end_inset
  127. is algebraic over
  128. \begin_inset Formula \( R[z] \)
  129. \end_inset
  130. .
  131. Let's proceed exactly as in the
  132. \begin_inset Quotes eld
  133. \end_inset
  134. diag_series
  135. \begin_inset Quotes erd
  136. \end_inset
  137. paper.
  138. \begin_inset Formula \( F(z^{2}) \)
  139. \end_inset
  140. is the coefficient of
  141. \begin_inset Formula \( t^{0} \)
  142. \end_inset
  143. in
  144. \begin_inset Formula
  145. \[
  146. G(zt,\frac{z}{t})=\frac{2t}{2t-\left( (x+zt)^{2}-1\right) z}=\frac{2t}{-z^{3}\cdot t^{2}+2(1-xz^{2})\cdot t+(z-x^{2}z)}\]
  147. \end_inset
  148. The splitting field of the denominator is
  149. \begin_inset Formula \( L=Q(x)(z)(\alpha ) \)
  150. \end_inset
  151. where
  152. \begin_inset Formula
  153. \[
  154. \alpha _{1/2}=\frac{1-xz^{2}\pm \sqrt{1-2xz^{2}+z^{4}}}{z^{3}}\]
  155. \end_inset
  156. \begin_inset Formula
  157. \[
  158. \alpha =\alpha _{1}=\frac{2}{z^{3}}-\frac{2x}{z}+\frac{1-x^{2}}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\]
  159. \end_inset
  160. \begin_inset Formula
  161. \[
  162. \alpha _{2}=\frac{x^{2}-1}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\]
  163. \end_inset
  164. The partial fraction decomposition of
  165. \begin_inset Formula \( G(zt,\frac{z}{t}) \)
  166. \end_inset
  167. reads
  168. \begin_inset Formula
  169. \[
  170. G(zt,\frac{z}{t})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{t-\alpha _{1}}-\frac{\alpha _{2}}{t-\alpha _{2}}\right) \]
  171. \end_inset
  172. It follows that
  173. \begin_inset Formula
  174. \[
  175. F(z^{2})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{0-\alpha _{1}}-0\right) =\frac{1}{\sqrt{1-2xz^{2}+z^{4}}}\]
  176. \end_inset
  177. hence
  178. \begin_inset Formula
  179. \[
  180. F(z)=\frac{1}{\sqrt{1-2xz+z^{2}}}\]
  181. \end_inset
  182. \layout Standard
  183. It follows that
  184. \begin_inset Formula \( (1-2xz+z^{2})\cdot \frac{d}{dz}F+(z-x)\cdot F=0 \)
  185. \end_inset
  186. .
  187. This is equivalent to the claimed recurrence.
  188. \layout Standard
  189. Starting from the closed form for
  190. \begin_inset Formula \( F \)
  191. \end_inset
  192. , we compute a linear relation for the partial derivatives of
  193. \begin_inset Formula \( F \)
  194. \end_inset
  195. .
  196. Write
  197. \begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
  198. \end_inset
  199. and
  200. \begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
  201. \end_inset
  202. .
  203. One computes
  204. \begin_inset Formula
  205. \[
  206. F=1\cdot F\]
  207. \end_inset
  208. \begin_inset Formula
  209. \[
  210. \left( 1-2xz+z^{2}\right) \cdot \partial _{x}F=z\cdot F\]
  211. \end_inset
  212. \begin_inset Formula
  213. \[
  214. \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}^{2}F=3z^{2}\cdot F\]
  215. \end_inset
  216. \begin_inset Formula
  217. \[
  218. \left( 1-2xz+z^{2}\right) \cdot \Delta _{z}F=(xz-z^{2})\cdot F\]
  219. \end_inset
  220. \begin_inset Formula
  221. \[
  222. \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}\Delta _{z}F=(z+xz^{2}-2z^{3})\cdot F\]
  223. \end_inset
  224. \begin_inset Formula
  225. \[
  226. \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}^{2}F=\left( xz+(x^{2}-2)z^{2}-xz^{3}+z^{4}\right) \cdot F\]
  227. \end_inset
  228. Solve a homogeneous
  229. \begin_inset Formula \( 5\times 6 \)
  230. \end_inset
  231. system of linear equations over
  232. \begin_inset Formula \( Q(x) \)
  233. \end_inset
  234. to get
  235. \begin_inset Formula
  236. \[
  237. \left( 1-2xz+z^{2}\right) ^{2}\cdot \left( (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F\right) =0\]
  238. \end_inset
  239. Divide by the first factor to get
  240. \begin_inset Formula
  241. \[
  242. (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F=0\]
  243. \end_inset
  244. This is equivalent to the claimed equation
  245. \begin_inset Formula \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \)
  246. \end_inset
  247. .
  248. \layout Bibliography
  249. [1] Bruno Haible: D-finite power series in several variables.
  250. \shape italic
  251. Diploma thesis, University of Karlsruhe, June 1989
  252. \shape default
  253. .
  254. Sections 2.
  255. 14, 2.
  256. 15 and 2.
  257. 22.