|
|
<HTML> <HEAD> <!-- Created by texi2html 1.56k from cln.texi on 14 January 2000 -->
<TITLE>CLN, a Class Library for Numbers - 9. Univariate polynomials</TITLE> </HEAD> <BODY> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_8.html">previous</A>, <A HREF="cln_10.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. <P><HR><P>
<H1><A NAME="SEC54" HREF="cln_toc.html#TOC54">9. Univariate polynomials</A></H1>
<H2><A NAME="SEC55" HREF="cln_toc.html#TOC55">9.1 Univariate polynomial rings</A></H2>
<P> CLN implements univariate polynomials (polynomials in one variable) over an arbitrary ring. The indeterminate variable may be either unnamed (and will be printed according to <CODE>cl_default_print_flags.univpoly_varname</CODE>, which defaults to <SAMP>`x'</SAMP>) or carry a given name. The base ring and the indeterminate are explicitly part of every polynomial. CLN doesn't allow you to (accidentally) mix elements of different polynomial rings, e.g. <CODE>(a^2+1) * (b^3-1)</CODE> will result in a runtime error. (Ideally this should return a multivariate polynomial, but they are not yet implemented in CLN.)
<P> The classes of univariate polynomial rings are
<PRE> Ring cl_ring <cl_ring.h> | | Univariate polynomial ring cl_univpoly_ring <cl_univpoly.h> | +----------------+-------------------+ | | | Complex polynomial ring | Modular integer polynomial ring cl_univpoly_complex_ring | cl_univpoly_modint_ring <cl_univpoly_complex.h> | <cl_univpoly_modint.h> | +----------------+ | | Real polynomial ring | cl_univpoly_real_ring | <cl_univpoly_real.h> | | +----------------+ | | Rational polynomial ring | cl_univpoly_rational_ring | <cl_univpoly_rational.h> | | +----------------+ | Integer polynomial ring cl_univpoly_integer_ring <cl_univpoly_integer.h> </PRE>
<P> and the corresponding classes of univariate polynomials are
<PRE> Univariate polynomial cl_UP <cl_univpoly.h> | +----------------+-------------------+ | | | Complex polynomial | Modular integer polynomial cl_UP_N | cl_UP_MI <cl_univpoly_complex.h> | <cl_univpoly_modint.h> | +----------------+ | | Real polynomial | cl_UP_R | <cl_univpoly_real.h> | | +----------------+ | | Rational polynomial | cl_UP_RA | <cl_univpoly_rational.h> | | +----------------+ | Integer polynomial cl_UP_I <cl_univpoly_integer.h> </PRE>
<P> Univariate polynomial rings are constructed using the functions
<DL COMPACT>
<DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R)</CODE> <DD> <DT><CODE>cl_univpoly_ring cl_find_univpoly_ring (const cl_ring& R, const cl_symbol& varname)</CODE> <DD> This function returns the polynomial ring <SAMP>`R[X]'</SAMP>, unnamed or named. <CODE>R</CODE> may be an arbitrary ring. This function takes care of finding out about special cases of <CODE>R</CODE>, such as the rings of complex numbers, real numbers, rational numbers, integers, or modular integer rings. There is a cache table of rings, indexed by <CODE>R</CODE> and <CODE>varname</CODE>. This ensures that two calls of this function with the same arguments will return the same polynomial ring.
<DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R)</CODE> <DD> <DT><CODE>cl_univpoly_complex_ring cl_find_univpoly_ring (const cl_complex_ring& R, const cl_symbol& varname)</CODE> <DD> <DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R)</CODE> <DD> <DT><CODE>cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& R, const cl_symbol& varname)</CODE> <DD> <DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R)</CODE> <DD> <DT><CODE>cl_univpoly_rational_ring cl_find_univpoly_ring (const cl_rational_ring& R, const cl_symbol& varname)</CODE> <DD> <DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R)</CODE> <DD> <DT><CODE>cl_univpoly_integer_ring cl_find_univpoly_ring (const cl_integer_ring& R, const cl_symbol& varname)</CODE> <DD> <DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R)</CODE> <DD> <DT><CODE>cl_univpoly_modint_ring cl_find_univpoly_ring (const cl_modint_ring& R, const cl_symbol& varname)</CODE> <DD> These functions are equivalent to the general <CODE>cl_find_univpoly_ring</CODE>, only the return type is more specific, according to the base ring's type. </DL>
<H2><A NAME="SEC56" HREF="cln_toc.html#TOC56">9.2 Functions on univariate polynomials</A></H2>
<P> Given a univariate polynomial ring <CODE>R</CODE>, the following members can be used.
<DL COMPACT>
<DT><CODE>cl_ring R->basering()</CODE> <DD> This returns the base ring, as passed to <SAMP>`cl_find_univpoly_ring'</SAMP>.
<DT><CODE>cl_UP R->zero()</CODE> <DD> This returns <CODE>0 in R</CODE>, a polynomial of degree -1.
<DT><CODE>cl_UP R->one()</CODE> <DD> This returns <CODE>1 in R</CODE>, a polynomial of degree <= 0.
<DT><CODE>cl_UP R->canonhom (const cl_I& x)</CODE> <DD> This returns <CODE>x in R</CODE>, a polynomial of degree <= 0.
<DT><CODE>cl_UP R->monomial (const cl_ring_element& x, uintL e)</CODE> <DD> This returns a sparse polynomial: <CODE>x * X^e</CODE>, where <CODE>X</CODE> is the indeterminate.
<DT><CODE>cl_UP R->create (sintL degree)</CODE> <DD> Creates a new polynomial with a given degree. The zero polynomial has degree <CODE>-1</CODE>. After creating the polynomial, you should put in the coefficients, using the <CODE>set_coeff</CODE> member function, and then call the <CODE>finalize</CODE> member function. </DL>
<P> The following are the only destructive operations on univariate polynomials.
<DL COMPACT>
<DT><CODE>void set_coeff (cl_UP& x, uintL index, const cl_ring_element& y)</CODE> <DD> This changes the coefficient of <CODE>X^index</CODE> in <CODE>x</CODE> to be <CODE>y</CODE>. After changing a polynomial and before applying any "normal" operation on it, you should call its <CODE>finalize</CODE> member function.
<DT><CODE>void finalize (cl_UP& x)</CODE> <DD> This function marks the endpoint of destructive modifications of a polynomial. It normalizes the internal representation so that subsequent computations have less overhead. Doing normal computations on unnormalized polynomials may produce wrong results or crash the program. </DL>
<P> The following operations are defined on univariate polynomials.
<DL COMPACT>
<DT><CODE>cl_univpoly_ring x.ring ()</CODE> <DD> Returns the ring to which the univariate polynomial <CODE>x</CODE> belongs.
<DT><CODE>cl_UP operator+ (const cl_UP&, const cl_UP&)</CODE> <DD> Returns the sum of two univariate polynomials.
<DT><CODE>cl_UP operator- (const cl_UP&, const cl_UP&)</CODE> <DD> Returns the difference of two univariate polynomials.
<DT><CODE>cl_UP operator- (const cl_UP&)</CODE> <DD> Returns the negative of a univariate polynomial.
<DT><CODE>cl_UP operator* (const cl_UP&, const cl_UP&)</CODE> <DD> Returns the product of two univariate polynomials. One of the arguments may also be a plain integer or an element of the base ring.
<DT><CODE>cl_UP square (const cl_UP&)</CODE> <DD> Returns the square of a univariate polynomial.
<DT><CODE>cl_UP expt_pos (const cl_UP& x, const cl_I& y)</CODE> <DD> <CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>.
<DT><CODE>bool operator== (const cl_UP&, const cl_UP&)</CODE> <DD> <DT><CODE>bool operator!= (const cl_UP&, const cl_UP&)</CODE> <DD> Compares two univariate polynomials, belonging to the same univariate polynomial ring, for equality.
<DT><CODE>cl_boolean zerop (const cl_UP& x)</CODE> <DD> Returns true if <CODE>x</CODE> is <CODE>0 in R</CODE>.
<DT><CODE>sintL degree (const cl_UP& x)</CODE> <DD> Returns the degree of the polynomial. The zero polynomial has degree <CODE>-1</CODE>.
<DT><CODE>cl_ring_element coeff (const cl_UP& x, uintL index)</CODE> <DD> Returns the coefficient of <CODE>X^index</CODE> in the polynomial <CODE>x</CODE>.
<DT><CODE>cl_ring_element x (const cl_ring_element& y)</CODE> <DD> Evaluation: If <CODE>x</CODE> is a polynomial and <CODE>y</CODE> belongs to the base ring, then <SAMP>`x(y)'</SAMP> returns the value of the substitution of <CODE>y</CODE> into <CODE>x</CODE>.
<DT><CODE>cl_UP deriv (const cl_UP& x)</CODE> <DD> Returns the derivative of the polynomial <CODE>x</CODE> with respect to the indeterminate <CODE>X</CODE>. </DL>
<P> The following output functions are defined (see also the chapter on input/output).
<DL COMPACT>
<DT><CODE>void fprint (cl_ostream stream, const cl_UP& x)</CODE> <DD> <DT><CODE>cl_ostream operator<< (cl_ostream stream, const cl_UP& x)</CODE> <DD> Prints the univariate polynomial <CODE>x</CODE> on the <CODE>stream</CODE>. The output may depend on the global printer settings in the variable <CODE>cl_default_print_flags</CODE>. </DL>
<H2><A NAME="SEC57" HREF="cln_toc.html#TOC57">9.3 Special polynomials</A></H2>
<P> The following functions return special polynomials.
<DL COMPACT>
<DT><CODE>cl_UP_I cl_tschebychev (sintL n)</CODE> <DD> Returns the n-th Tchebychev polynomial (n >= 0).
<DT><CODE>cl_UP_I cl_hermite (sintL n)</CODE> <DD> Returns the n-th Hermite polynomial (n >= 0).
<DT><CODE>cl_UP_RA cl_legendre (sintL n)</CODE> <DD> Returns the n-th Legendre polynomial (n >= 0).
<DT><CODE>cl_UP_I cl_laguerre (sintL n)</CODE> <DD> Returns the n-th Laguerre polynomial (n >= 0). </DL>
<P> Information how to derive the differential equation satisfied by each of these polynomials from their definition can be found in the <CODE>doc/polynomial/</CODE> directory.
<P><HR><P> Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_8.html">previous</A>, <A HREF="cln_10.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. </BODY> </HTML>
|