You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

333 lines
5.7 KiB

25 years ago
  1. #This file was created by <bruno> Sun Feb 16 00:32:21 1997
  2. #LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
  3. \lyxformat 2.10
  4. \textclass article
  5. \language default
  6. \inputencoding latin1
  7. \fontscheme default
  8. \epsfig dvips
  9. \papersize a4paper
  10. \paperfontsize 12
  11. \baselinestretch 1.00
  12. \secnumdepth 3
  13. \tocdepth 3
  14. \paragraph_separation indent
  15. \quotes_language english
  16. \quotes_times 2
  17. \paperorientation portrait
  18. \papercolumns 1
  19. \papersides 1
  20. \paperpagestyle plain
  21. \layout Standard
  22. The Tschebychev polynomials (of the 1st kind)
  23. \begin_inset Formula \( T_{n}(x) \)
  24. \end_inset
  25. are defined through the recurrence relation
  26. \layout Standard
  27. \begin_inset Formula
  28. \[
  29. T_{0}(x)=1\]
  30. \end_inset
  31. \layout Standard
  32. \begin_inset Formula
  33. \[
  34. T_{1}(x)=x\]
  35. \end_inset
  36. \layout Standard
  37. \begin_inset Formula
  38. \[
  39. T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\]
  40. \end_inset
  41. for
  42. \begin_inset Formula \( n\geq 0 \)
  43. \end_inset
  44. .
  45. \layout Description
  46. Theorem:
  47. \layout Standard
  48. \begin_inset Formula \( T_{n}(x) \)
  49. \end_inset
  50. satisfies the differential equation
  51. \begin_inset Formula \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \)
  52. \end_inset
  53. for all
  54. \begin_inset Formula \( n\geq 0 \)
  55. \end_inset
  56. .
  57. \layout Description
  58. Proof:
  59. \layout Standard
  60. Let
  61. \begin_inset Formula \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \)
  62. \end_inset
  63. be the generating function of the sequence of polynomials.
  64. The recurrence is equivalent to the equation
  65. \begin_inset Formula
  66. \[
  67. (1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\]
  68. \end_inset
  69. \layout Description
  70. Proof
  71. \protected_separator
  72. 1:
  73. \layout Standard
  74. \begin_inset Formula \( F \)
  75. \end_inset
  76. is a rational function in
  77. \begin_inset Formula \( z \)
  78. \end_inset
  79. ,
  80. \begin_inset Formula \( F=\frac{1-xz}{1-2xz+z^{2}} \)
  81. \end_inset
  82. .
  83. From the theory of recursions with constant coefficients, we know that
  84. we have to perform a partial fraction decomposition.
  85. So let
  86. \begin_inset Formula \( p(z)=z^{2}-2x\cdot z+1 \)
  87. \end_inset
  88. be the denominator and
  89. \begin_inset Formula \( \alpha =x+\sqrt{x^{2}-1} \)
  90. \end_inset
  91. and
  92. \begin_inset Formula \( \alpha ^{-1} \)
  93. \end_inset
  94. its zeroes.
  95. The partial fraction decomposition reads
  96. \begin_inset Formula
  97. \[
  98. F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \]
  99. \end_inset
  100. hence
  101. \begin_inset Formula \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \)
  102. \end_inset
  103. .
  104. Note that the field
  105. \begin_inset Formula \( Q(x)(\alpha ) \)
  106. \end_inset
  107. , being a finite dimensional extension field of
  108. \begin_inset Formula \( Q(x) \)
  109. \end_inset
  110. in characteristic 0, has a unique derivation extending
  111. \begin_inset Formula \( \frac{d}{dx} \)
  112. \end_inset
  113. on
  114. \begin_inset Formula \( Q(x) \)
  115. \end_inset
  116. .
  117. We can therefore try to construct an annihilating differential operator
  118. for
  119. \begin_inset Formula \( T_{n}(x) \)
  120. \end_inset
  121. by combination of annihilating differential operators for
  122. \begin_inset Formula \( \alpha ^{n} \)
  123. \end_inset
  124. and
  125. \begin_inset Formula \( \alpha ^{-n} \)
  126. \end_inset
  127. .
  128. In fact,
  129. \begin_inset Formula \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \)
  130. \end_inset
  131. satisfies
  132. \begin_inset Formula \( L_{1}[\alpha ^{n}]=0 \)
  133. \end_inset
  134. , and
  135. \begin_inset Formula \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \)
  136. \end_inset
  137. satisfies
  138. \begin_inset Formula \( L_{2}[\alpha ^{-n}]=0 \)
  139. \end_inset
  140. .
  141. A common multiple of
  142. \begin_inset Formula \( L_{1} \)
  143. \end_inset
  144. and
  145. \begin_inset Formula \( L_{2} \)
  146. \end_inset
  147. is easily found by solving an appropriate system of linear equations:
  148. \layout Standard
  149. \begin_inset Formula \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \)
  150. \end_inset
  151. \layout Standard
  152. It follows that both
  153. \begin_inset Formula \( L[\alpha ^{n}]=0 \)
  154. \end_inset
  155. and
  156. \begin_inset Formula \( L[\alpha ^{-n}]=0 \)
  157. \end_inset
  158. , hence
  159. \begin_inset Formula \( L[T_{n}(x)]=0 \)
  160. \end_inset
  161. .
  162. \layout Description
  163. Proof
  164. \protected_separator
  165. 2:
  166. \layout Standard
  167. Starting from the above equation, we compute a linear relation for the partial
  168. derivatives of
  169. \begin_inset Formula \( F \)
  170. \end_inset
  171. .
  172. Write
  173. \begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
  174. \end_inset
  175. and
  176. \begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
  177. \end_inset
  178. .
  179. One computes
  180. \layout Standard
  181. \begin_inset Formula
  182. \[
  183. \left( 1-2xz+z^{2}\right) \cdot F=1-xz\]
  184. \end_inset
  185. \begin_inset Formula
  186. \[
  187. \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\]
  188. \end_inset
  189. \begin_inset Formula
  190. \[
  191. \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\]
  192. \end_inset
  193. \begin_inset Formula
  194. \[
  195. \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\]
  196. \end_inset
  197. \begin_inset Formula
  198. \[
  199. \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\]
  200. \end_inset
  201. \begin_inset Formula
  202. \[
  203. \left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\]
  204. \end_inset
  205. \layout Standard
  206. Solve a
  207. \begin_inset Formula \( 6\times 6 \)
  208. \end_inset
  209. system of linear equations over
  210. \begin_inset Formula \( Q(x) \)
  211. \end_inset
  212. to get
  213. \begin_inset Formula
  214. \[
  215. x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\]
  216. \end_inset
  217. \layout Standard
  218. This is equivalent to the claimed equation
  219. \begin_inset Formula \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \)
  220. \end_inset
  221. .
  222. \layout Bibliography
  223. \cursor 137
  224. [1] Bruno Haible: D-finite power series in several variables.
  225. \shape italic
  226. Diploma thesis, University of Karlsruhe, June 1989.
  227. \shape default
  228. Sections 2.
  229. 12 and 2.
  230. 15.