You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
%% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
%% Don't edit this file unless you are sure what you are doing.
\documentclass[12pt,a4paper,oneside,onecolumn]{article} \usepackage[]{fontenc} \usepackage[latin1]{inputenc} \usepackage[dvips]{epsfig}
%%
%% BEGIN The lyx specific LaTeX commands.
%%
\makeatletter \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
\newcommand{\lyxtitle}[1] {\thispagestyle{empty} \global\@topnum\z@ \section*{\LARGE \centering \sffamily \bfseries \protect#1 } } \newcommand{\lyxline}[1]{ {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} } \newenvironment{lyxsectionbibliography} { \section*{\refname} \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \newenvironment{lyxchapterbibliography} { \chapter*{\bibname} \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \def\lxq{"} \newenvironment{lyxcode} {\list{}{ \rightmargin\leftmargin \raggedright \itemsep 0pt \parsep 0pt \ttfamily }%
\item[] } {\endlist} \newcommand{\lyxlabel}[1]{#1 \hfill} \newenvironment{lyxlist}[1] {\begin{list}{} {\settowidth{\labelwidth}{#1} \setlength{\leftmargin}{\labelwidth} \addtolength{\leftmargin}{\labelsep} \renewcommand{\makelabel}{\lyxlabel}}} {\end{list}} \newcommand{\lyxletterstyle}{ \setlength\parskip{0.7em} \setlength\parindent{0pt} } \newcommand{\lyxaddress}[1]{ \par {\raggedright #1 \vspace{1.4em} \noindent\par} } \newcommand{\lyxrightaddress}[1]{ \par {\raggedleft \begin{tabular}{l}\ignorespaces #1 \end{tabular} \vspace{1.4em} \par} } \newcommand{\lyxformula}[1]{ \begin{eqnarray*} #1 \end{eqnarray*} } \newcommand{\lyxnumberedformula}[1]{ \begin{eqnarray} #1 \end{eqnarray} } \makeatother
%%
%% END The lyx specific LaTeX commands.
%%
\pagestyle{plain} \setcounter{secnumdepth}{3} \setcounter{tocdepth}{3} \begin{document}
The Hermite polynomials \( H_{n}(x) \) are defined through \[
H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
\begin{description}
\item [Theorem:]~
\end{description}
\( H_{n}(x) \) satisfies the recurrence relation
\[
H_{0}(x)=1\]
\[
H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\] for \( n\geq 0 \) and the differential equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all \( n\geq 0 \).
\begin{description}
\item [Proof:]~
\end{description}
Let \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials. Then, because the Taylor series development theorem holds in formal power series rings (see [1], section 2.16), we can simplify \begin{eqnarray*} F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\ & = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\ & = & e^{2xz-z^{2}} \end{eqnarray*} It follows that \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence.
Starting from this equation, we compute a linear relation for the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes \[
F=1\cdot F\]
\[
\partial _{x}F=2z\cdot F\]
\[
\partial _{x}^{2}F=4z^{2}\cdot F\]
\[
\Delta _{z}F=(2xz-2z^{2})\cdot F\]
\[
\partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
\[
\Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\] Solve a homogeneous \( 5\times 6 \) system of linear equations over \( Q(x) \) to get \[
(-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\] This is equivalent to the claimed equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \).
\begin{lyxsectionbibliography}
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and 2.22.
\end{lyxsectionbibliography}
\end{document}
|