You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
6.0 KiB

25 years ago
  1. %% This LaTeX-file was created by <bruno> Sun Feb 16 14:06:08 1997
  2. %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
  3. %% Don't edit this file unless you are sure what you are doing.
  4. \documentclass[12pt,a4paper,oneside,onecolumn]{article}
  5. \usepackage[]{fontenc}
  6. \usepackage[latin1]{inputenc}
  7. \usepackage[dvips]{epsfig}
  8. %%
  9. %% BEGIN The lyx specific LaTeX commands.
  10. %%
  11. \makeatletter
  12. \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
  13. \newcommand{\lyxtitle}[1] {\thispagestyle{empty}
  14. \global\@topnum\z@
  15. \section*{\LARGE \centering \sffamily \bfseries \protect#1 }
  16. }
  17. \newcommand{\lyxline}[1]{
  18. {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
  19. }
  20. \newenvironment{lyxsectionbibliography}
  21. {
  22. \section*{\refname}
  23. \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
  24. \begin{list}{}{
  25. \itemindent-\leftmargin
  26. \labelsep 0pt
  27. \renewcommand{\makelabel}{}
  28. }
  29. }
  30. {\end{list}}
  31. \newenvironment{lyxchapterbibliography}
  32. {
  33. \chapter*{\bibname}
  34. \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
  35. \begin{list}{}{
  36. \itemindent-\leftmargin
  37. \labelsep 0pt
  38. \renewcommand{\makelabel}{}
  39. }
  40. }
  41. {\end{list}}
  42. \def\lxq{"}
  43. \newenvironment{lyxcode}
  44. {\list{}{
  45. \rightmargin\leftmargin
  46. \raggedright
  47. \itemsep 0pt
  48. \parsep 0pt
  49. \ttfamily
  50. }%
  51. \item[]
  52. }
  53. {\endlist}
  54. \newcommand{\lyxlabel}[1]{#1 \hfill}
  55. \newenvironment{lyxlist}[1]
  56. {\begin{list}{}
  57. {\settowidth{\labelwidth}{#1}
  58. \setlength{\leftmargin}{\labelwidth}
  59. \addtolength{\leftmargin}{\labelsep}
  60. \renewcommand{\makelabel}{\lyxlabel}}}
  61. {\end{list}}
  62. \newcommand{\lyxletterstyle}{
  63. \setlength\parskip{0.7em}
  64. \setlength\parindent{0pt}
  65. }
  66. \newcommand{\lyxaddress}[1]{
  67. \par {\raggedright #1
  68. \vspace{1.4em}
  69. \noindent\par}
  70. }
  71. \newcommand{\lyxrightaddress}[1]{
  72. \par {\raggedleft \begin{tabular}{l}\ignorespaces
  73. #1
  74. \end{tabular}
  75. \vspace{1.4em}
  76. \par}
  77. }
  78. \newcommand{\lyxformula}[1]{
  79. \begin{eqnarray*}
  80. #1
  81. \end{eqnarray*}
  82. }
  83. \newcommand{\lyxnumberedformula}[1]{
  84. \begin{eqnarray}
  85. #1
  86. \end{eqnarray}
  87. }
  88. \makeatother
  89. %%
  90. %% END The lyx specific LaTeX commands.
  91. %%
  92. \pagestyle{plain}
  93. \setcounter{secnumdepth}{3}
  94. \setcounter{tocdepth}{3}
  95. %% Begin LyX user specified preamble:
  96. \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
  97. \def\ll{\langle\!\langle}
  98. \def\gg{\rangle\!\rangle}
  99. \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
  100. %% End LyX user specified preamble.
  101. \begin{document}
  102. The Laguerre polynomials \( L_{n}(x) \) are defined through
  103. \[
  104. L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
  105. \begin{description}
  106. \item [Theorem:]~
  107. \end{description}
  108. \( L_{n}(x) \) satisfies the recurrence relation
  109. \[
  110. L_{0}(x)=1\]
  111. \[
  112. L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
  113. for \( n\geq 0 \) and the differential equation \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) for all \( n\geq 0 \).
  114. \begin{description}
  115. \item [Proof:]~
  116. \end{description}
  117. Let \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \) be the exponential generating function of the sequence of polynomials.
  118. It is the diagonal series of the power series
  119. \[
  120. G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
  121. Because the Taylor series
  122. development theorem holds in formal power series rings (see [1], section
  123. 2.16), we can simplify
  124. \begin{eqnarray*}
  125. G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
  126. & = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
  127. & = & \frac{e^{-y}}{1-(x+y)z}
  128. \end{eqnarray*}
  129. We take over the terminology from the ``diag\_rational''
  130. paper; here \( R=Q[x] \) and \( M=Q[[x]] \) (or, if you like it better, \( M=H(C) \), the algebra of
  131. functions holomorphic in the entire complex plane). \( G\in M[[y,z]] \) is not rational;
  132. nevertheless we can proceed similarly to the ``diag\_series'' paper.
  133. \( F(z^{2}) \) is the coefficient of \( t^{0} \) in
  134. \[
  135. G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
  136. The denominator's only zero is \( t=\frac{xz}{1-z^{2}} \). We
  137. can write
  138. \[
  139. e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
  140. with \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg \). This yields -- all computations being done in \( M\ll z,t\gg \)
  141. --
  142. \begin{eqnarray*}
  143. G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
  144. & = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
  145. \end{eqnarray*}
  146. Here, the coefficient of \( t^{0} \) is
  147. \[
  148. F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
  149. hence
  150. \[
  151. F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
  152. It follows that \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \). This is equivalent to the claimed recurrence.
  153. Starting from the closed form for \( F \), we compute a linear relation
  154. for the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
  155. \[
  156. F=1\cdot F\]
  157. \[
  158. \left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
  159. \[
  160. \left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
  161. \[
  162. \left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
  163. \[
  164. \left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
  165. Solve
  166. a homogeneous \( 4\times 5 \) system of linear equations over \( Q(x) \) to get
  167. \[
  168. \left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
  169. Divide by
  170. the first factor to get
  171. \[
  172. (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
  173. This is equivalent to the claimed equation
  174. \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \).
  175. \begin{lyxsectionbibliography}
  176. \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
  177. thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
  178. 2.22.
  179. \end{lyxsectionbibliography}
  180. \end{document}