|
|
// Univariate Polynomials over the real numbers.
#ifndef _CL_UNIVPOLY_REAL_H
#define _CL_UNIVPOLY_REAL_H
#include "cl_ring.h"
#include "cl_univpoly.h"
#include "cl_number.h"
#include "cl_real_class.h"
#include "cl_integer_class.h"
#include "cl_real_ring.h"
// Normal univariate polynomials with stricter static typing:
// `cl_R' instead of `cl_ring_element'.
#ifdef notyet
typedef cl_UP_specialized<cl_R> cl_UP_R; typedef cl_univpoly_specialized_ring<cl_R> cl_univpoly_real_ring; //typedef cl_heap_univpoly_specialized_ring<cl_R> cl_heap_univpoly_real_ring;
#else
class cl_heap_univpoly_real_ring;
class cl_univpoly_real_ring : public cl_univpoly_ring { public: // Default constructor.
cl_univpoly_real_ring () : cl_univpoly_ring () {} // Copy constructor.
cl_univpoly_real_ring (const cl_univpoly_real_ring&); // Assignment operator.
cl_univpoly_real_ring& operator= (const cl_univpoly_real_ring&); // Automatic dereferencing.
cl_heap_univpoly_real_ring* operator-> () const { return (cl_heap_univpoly_real_ring*)heappointer; } }; // Copy constructor and assignment operator.
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_real_ring,cl_univpoly_ring) CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_real_ring,cl_univpoly_real_ring)
class cl_UP_R : public cl_UP { public: const cl_univpoly_real_ring& ring () const { return The(cl_univpoly_real_ring)(_ring); } // Conversion.
CL_DEFINE_CONVERTER(cl_ring_element) // Destructive modification.
void set_coeff (uintL index, const cl_R& y); void finalize(); // Evaluation.
const cl_R operator() (const cl_R& y) const; public: // Ability to place an object at a given address.
void* operator new (size_t size) { return cl_malloc_hook(size); } void* operator new (size_t size, cl_UP_R* ptr) { (void)size; return ptr; } void operator delete (void* ptr) { cl_free_hook(ptr); } };
class cl_heap_univpoly_real_ring : public cl_heap_univpoly_ring { SUBCLASS_cl_heap_univpoly_ring() // High-level operations.
void fprint (cl_ostream stream, const cl_UP_R& x) { cl_heap_univpoly_ring::fprint(stream,x); } cl_boolean equal (const cl_UP_R& x, const cl_UP_R& y) { return cl_heap_univpoly_ring::equal(x,y); } const cl_UP_R zero () { return The2(cl_UP_R)(cl_heap_univpoly_ring::zero()); } cl_boolean zerop (const cl_UP_R& x) { return cl_heap_univpoly_ring::zerop(x); } const cl_UP_R plus (const cl_UP_R& x, const cl_UP_R& y) { return The2(cl_UP_R)(cl_heap_univpoly_ring::plus(x,y)); } const cl_UP_R minus (const cl_UP_R& x, const cl_UP_R& y) { return The2(cl_UP_R)(cl_heap_univpoly_ring::minus(x,y)); } const cl_UP_R uminus (const cl_UP_R& x) { return The2(cl_UP_R)(cl_heap_univpoly_ring::uminus(x)); } const cl_UP_R one () { return The2(cl_UP_R)(cl_heap_univpoly_ring::one()); } const cl_UP_R canonhom (const cl_I& x) { return The2(cl_UP_R)(cl_heap_univpoly_ring::canonhom(x)); } const cl_UP_R mul (const cl_UP_R& x, const cl_UP_R& y) { return The2(cl_UP_R)(cl_heap_univpoly_ring::mul(x,y)); } const cl_UP_R square (const cl_UP_R& x) { return The2(cl_UP_R)(cl_heap_univpoly_ring::square(x)); } const cl_UP_R expt_pos (const cl_UP_R& x, const cl_I& y) { return The2(cl_UP_R)(cl_heap_univpoly_ring::expt_pos(x,y)); } const cl_UP_R scalmul (const cl_R& x, const cl_UP_R& y) { return The2(cl_UP_R)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_R_ring,x),y)); } sintL degree (const cl_UP_R& x) { return cl_heap_univpoly_ring::degree(x); } const cl_UP_R monomial (const cl_R& x, uintL e) { return The2(cl_UP_R)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_R_ring,x),e)); } const cl_R coeff (const cl_UP_R& x, uintL index) { return The(cl_R)(cl_heap_univpoly_ring::coeff(x,index)); } const cl_UP_R create (sintL deg) { return The2(cl_UP_R)(cl_heap_univpoly_ring::create(deg)); } void set_coeff (cl_UP_R& x, uintL index, const cl_R& y) { cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_R_ring,y)); } void finalize (cl_UP_R& x) { cl_heap_univpoly_ring::finalize(x); } const cl_R eval (const cl_UP_R& x, const cl_R& y) { return The(cl_R)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_R_ring,y))); } private: // No need for any constructors.
cl_heap_univpoly_real_ring (); };
// Lookup of polynomial rings.
inline const cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& r) { return The(cl_univpoly_real_ring) (cl_find_univpoly_ring((const cl_ring&)r)); } inline const cl_univpoly_real_ring cl_find_univpoly_ring (const cl_real_ring& r, const cl_symbol& varname) { return The(cl_univpoly_real_ring) (cl_find_univpoly_ring((const cl_ring&)r,varname)); }
// Operations on polynomials.
// Add.
inline const cl_UP_R operator+ (const cl_UP_R& x, const cl_UP_R& y) { return x.ring()->plus(x,y); }
// Negate.
inline const cl_UP_R operator- (const cl_UP_R& x) { return x.ring()->uminus(x); }
// Subtract.
inline const cl_UP_R operator- (const cl_UP_R& x, const cl_UP_R& y) { return x.ring()->minus(x,y); }
// Multiply.
inline const cl_UP_R operator* (const cl_UP_R& x, const cl_UP_R& y) { return x.ring()->mul(x,y); }
// Squaring.
inline const cl_UP_R square (const cl_UP_R& x) { return x.ring()->square(x); }
// Exponentiation x^y, where y > 0.
inline const cl_UP_R expt_pos (const cl_UP_R& x, const cl_I& y) { return x.ring()->expt_pos(x,y); }
// Scalar multiplication.
#if 0 // less efficient
inline const cl_UP_R operator* (const cl_I& x, const cl_UP_R& y) { return y.ring()->mul(y.ring()->canonhom(x),y); } inline const cl_UP_R operator* (const cl_UP_R& x, const cl_I& y) { return x.ring()->mul(x.ring()->canonhom(y),x); } #endif
inline const cl_UP_R operator* (const cl_I& x, const cl_UP_R& y) { return y.ring()->scalmul(x,y); } inline const cl_UP_R operator* (const cl_UP_R& x, const cl_I& y) { return x.ring()->scalmul(y,x); } inline const cl_UP_R operator* (const cl_R& x, const cl_UP_R& y) { return y.ring()->scalmul(x,y); } inline const cl_UP_R operator* (const cl_UP_R& x, const cl_R& y) { return x.ring()->scalmul(y,x); }
// Coefficient.
inline const cl_R coeff (const cl_UP_R& x, uintL index) { return x.ring()->coeff(x,index); }
// Destructive modification.
inline void set_coeff (cl_UP_R& x, uintL index, const cl_R& y) { x.ring()->set_coeff(x,index,y); } inline void finalize (cl_UP_R& x) { x.ring()->finalize(x); } inline void cl_UP_R::set_coeff (uintL index, const cl_R& y) { ring()->set_coeff(*this,index,y); } inline void cl_UP_R::finalize () { ring()->finalize(*this); }
// Evaluation. (No extension of the base ring allowed here for now.)
inline const cl_R cl_UP_R::operator() (const cl_R& y) const { return ring()->eval(*this,y); }
// Derivative.
inline const cl_UP_R deriv (const cl_UP_R& x) { return The2(cl_UP_R)(deriv((const cl_UP&)x)); }
#endif
CL_REQUIRE(cl_R_ring)
#endif /* _CL_UNIVPOLY_REAL_H */
|