You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

224 lines
6.7 KiB

25 years ago
  1. %% This LaTeX-file was created by <bruno> Sun Feb 16 14:24:52 1997
  2. %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
  3. %% Don't edit this file unless you are sure what you are doing.
  4. \documentclass[12pt,a4paper,oneside,onecolumn]{article}
  5. \usepackage[]{fontenc}
  6. \usepackage[latin1]{inputenc}
  7. \usepackage[dvips]{epsfig}
  8. %%
  9. %% BEGIN The lyx specific LaTeX commands.
  10. %%
  11. \makeatletter
  12. \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
  13. \newcommand{\lyxtitle}[1] {\thispagestyle{empty}
  14. \global\@topnum\z@
  15. \section*{\LARGE \centering \sffamily \bfseries \protect#1 }
  16. }
  17. \newcommand{\lyxline}[1]{
  18. {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
  19. }
  20. \newenvironment{lyxsectionbibliography}
  21. {
  22. \section*{\refname}
  23. \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
  24. \begin{list}{}{
  25. \itemindent-\leftmargin
  26. \labelsep 0pt
  27. \renewcommand{\makelabel}{}
  28. }
  29. }
  30. {\end{list}}
  31. \newenvironment{lyxchapterbibliography}
  32. {
  33. \chapter*{\bibname}
  34. \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
  35. \begin{list}{}{
  36. \itemindent-\leftmargin
  37. \labelsep 0pt
  38. \renewcommand{\makelabel}{}
  39. }
  40. }
  41. {\end{list}}
  42. \def\lxq{"}
  43. \newenvironment{lyxcode}
  44. {\list{}{
  45. \rightmargin\leftmargin
  46. \raggedright
  47. \itemsep 0pt
  48. \parsep 0pt
  49. \ttfamily
  50. }%
  51. \item[]
  52. }
  53. {\endlist}
  54. \newcommand{\lyxlabel}[1]{#1 \hfill}
  55. \newenvironment{lyxlist}[1]
  56. {\begin{list}{}
  57. {\settowidth{\labelwidth}{#1}
  58. \setlength{\leftmargin}{\labelwidth}
  59. \addtolength{\leftmargin}{\labelsep}
  60. \renewcommand{\makelabel}{\lyxlabel}}}
  61. {\end{list}}
  62. \newcommand{\lyxletterstyle}{
  63. \setlength\parskip{0.7em}
  64. \setlength\parindent{0pt}
  65. }
  66. \newcommand{\lyxaddress}[1]{
  67. \par {\raggedright #1
  68. \vspace{1.4em}
  69. \noindent\par}
  70. }
  71. \newcommand{\lyxrightaddress}[1]{
  72. \par {\raggedleft \begin{tabular}{l}\ignorespaces
  73. #1
  74. \end{tabular}
  75. \vspace{1.4em}
  76. \par}
  77. }
  78. \newcommand{\lyxformula}[1]{
  79. \begin{eqnarray*}
  80. #1
  81. \end{eqnarray*}
  82. }
  83. \newcommand{\lyxnumberedformula}[1]{
  84. \begin{eqnarray}
  85. #1
  86. \end{eqnarray}
  87. }
  88. \makeatother
  89. %%
  90. %% END The lyx specific LaTeX commands.
  91. %%
  92. \pagestyle{plain}
  93. \setcounter{secnumdepth}{3}
  94. \setcounter{tocdepth}{3}
  95. %% Begin LyX user specified preamble:
  96. \catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
  97. \def\mod#1{\allowbreak \mkern8mu \mathop{\operator@font mod}\,\,{#1}}
  98. \def\pmod#1{\allowbreak \mkern8mu \left({\mathop{\operator@font mod}\,\,{#1}}\right)}
  99. \catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
  100. %% End LyX user specified preamble.
  101. \begin{document}
  102. The Legendre polynomials \( P_{n}(x) \) are defined through
  103. \[
  104. P_{n}(x)=\frac{1}{2^{n}n!}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{2}-1)^{n}\]
  105. (For a motivation
  106. of the \( 2^{n} \) in the denominator, look at \( P_{n}(x) \) modulo an odd prime \( p \), and
  107. observe that \( P_{n}(x)\equiv P_{p-1-n}(x)\mod p \) for \( 0\leq n\leq p-1 \). This wouldn't hold if the \( 2^{n} \) factor in the denominator
  108. weren't present.)
  109. \begin{description}
  110. \item [Theorem:]~
  111. \end{description}
  112. \( P_{n}(x) \) satisfies the recurrence relation
  113. \[
  114. P_{0}(x)=1\]
  115. \[
  116. (n+1)\cdot P_{n+1}(x)=(2n+1)x\cdot P_{n}(x)-n\cdot P_{n-1}(x)\]
  117. for \( n\geq 0 \) and the differential equation \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \) for all \( n\geq 0 \).
  118. \begin{description}
  119. \item [Proof:]~
  120. \end{description}
  121. Let \( F:=\sum ^{\infty }_{n=0}P_{n}(x)\cdot z^{n} \) be the generating function of the sequence of polynomials. It
  122. is the diagonal series of the power series
  123. \[
  124. G:=\sum _{m,n=0}^{\infty }\frac{1}{2^{n}m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\cdot z^{n}\]
  125. Because the Taylor series
  126. development theorem holds in formal power series rings (see [1], section
  127. 2.16), we can simplify
  128. \begin{eqnarray*}
  129. G & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{2}-1)^{n}\cdot y^{m}\right) \cdot z^{n}\\
  130. & = & \sum _{n=0}^{\infty }\frac{1}{2^{n}}\cdot \left( (x+y)^{2}-1\right) ^{n}\cdot z^{n}\\
  131. & = & \frac{1}{1-\frac{1}{2}\left( (x+y)^{2}-1\right) z}
  132. \end{eqnarray*}
  133. We take over the terminology from the ``diag\_rational''
  134. paper; here \( R=Q[x] \) and \( M=Q[[x]] \) (or, if you like it better, \( M=H(C) \), the algebra of
  135. functions holomorphic in the entire complex plane). \( G\in M[[y,z]] \) is rational;
  136. hence \( F \) is algebraic over \( R[z] \). Let's proceed exactly as in the ``diag\_series''
  137. paper. \( F(z^{2}) \) is the coefficient of \( t^{0} \) in
  138. \[
  139. G(zt,\frac{z}{t})=\frac{2t}{2t-\left( (x+zt)^{2}-1\right) z}=\frac{2t}{-z^{3}\cdot t^{2}+2(1-xz^{2})\cdot t+(z-x^{2}z)}\]
  140. The splitting field of the denominator
  141. is \( L=Q(x)(z)(\alpha ) \) where
  142. \[
  143. \alpha _{1/2}=\frac{1-xz^{2}\pm \sqrt{1-2xz^{2}+z^{4}}}{z^{3}}\]
  144. \[
  145. \alpha =\alpha _{1}=\frac{2}{z^{3}}-\frac{2x}{z}+\frac{1-x^{2}}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\]
  146. \[
  147. \alpha _{2}=\frac{x^{2}-1}{2}z+\cdots \in Q(x)[[z]][\frac{1}{z}]\]
  148. The partial fraction decomposition of \( G(zt,\frac{z}{t}) \) reads
  149. \[
  150. G(zt,\frac{z}{t})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{t-\alpha _{1}}-\frac{\alpha _{2}}{t-\alpha _{2}}\right) \]
  151. It follows
  152. that
  153. \[
  154. F(z^{2})=-\frac{2}{z^{3}}\cdot \frac{1}{\alpha _{1}-\alpha _{2}}\cdot \left( \frac{\alpha _{1}}{0-\alpha _{1}}-0\right) =\frac{1}{\sqrt{1-2xz^{2}+z^{4}}}\]
  155. hence
  156. \[
  157. F(z)=\frac{1}{\sqrt{1-2xz+z^{2}}}\]
  158. It follows that \( (1-2xz+z^{2})\cdot \frac{d}{dz}F+(z-x)\cdot F=0 \). This is equivalent to the claimed recurrence.
  159. Starting from the closed form for \( F \), we compute a linear relation
  160. for the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
  161. \[
  162. F=1\cdot F\]
  163. \[
  164. \left( 1-2xz+z^{2}\right) \cdot \partial _{x}F=z\cdot F\]
  165. \[
  166. \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}^{2}F=3z^{2}\cdot F\]
  167. \[
  168. \left( 1-2xz+z^{2}\right) \cdot \Delta _{z}F=(xz-z^{2})\cdot F\]
  169. \[
  170. \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}\Delta _{z}F=(z+xz^{2}-2z^{3})\cdot F\]
  171. \[
  172. \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}^{2}F=\left( xz+(x^{2}-2)z^{2}-xz^{3}+z^{4}\right) \cdot F\]
  173. Solve
  174. a homogeneous \( 5\times 6 \) system of linear equations over \( Q(x) \) to get
  175. \[
  176. \left( 1-2xz+z^{2}\right) ^{2}\cdot \left( (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F\right) =0\]
  177. Divide by
  178. the first factor to get
  179. \[
  180. (-2x)\cdot \partial _{x}F+(1-x^{2})\cdot \partial _{x}^{2}F+\Delta _{z}F+\Delta _{z}^{2}F=0\]
  181. This is equivalent to the claimed equation
  182. \( (1-x^{2})\cdot P_{n}^{''}(x)-2x\cdot P_{n}^{'}(x)+(n^{2}+n)\cdot P_{n}(x)=0 \).
  183. \begin{lyxsectionbibliography}
  184. \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
  185. thesis, University of Karlsruhe, June 1989\em . Sections 2.14, 2.15
  186. and 2.22.
  187. \end{lyxsectionbibliography}
  188. \end{document}