You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
\magnification=\magstep3 \hsize=19truecm \vsize=19truecm \nopagenumbers \parindent=0mm \font\eins=cmb10 scaled \magstep 3 \font\zwei=cmr12 \font\mini=cmr7 \def\frac#1#2{{{#1} \over {#2}}} \hbox{} \vfill
\centerline{\eins Binary Splitting} \bigskip\bigskip Recursive algorithm: \medskip \centerline{$\displaystyle S_{[n_1,n_2)} = {\sum\limits_{n=n_1}^{n_2-1} \frac{a(n)}{b(n)} \, \frac{p(n_1) \cdots p(n)}{q(n_1) \cdots q(n)}}$} \medskip Compute $P = {p(n_1) \cdots p(n_2-1)}$, $Q = {q(n_1) \cdots q(n_2-1)}$, \vskip 0cm $B = {b(n_1) \cdots b(n_2-1)}$ and $T$ with \medskip \centerline{$\displaystyle S_{[n_1,n_2)} = \frac{T}{B \cdot Q}$} \bigskip \quad $n_2 - n_1 < 4$ \quad $\rightarrow$ directly \medskip \quad $n_2 - n_1 \geq 4$ \quad $\rightarrow$ split \medskip \centerline{$P = P_L \cdot P_R$} \centerline{$Q = Q_L \cdot Q_R$} \centerline{$B = B_L \cdot B_R$} \centerline{$T = B_R \cdot Q_R \cdot T_L + B_L \cdot P_L \cdot T_R$}
\vfill \hbox{} \eject
\end
|