|
|
Benchmark for Computer-Algebra Libraries ========================================
(jointly developed by the LiDIA and CLN developers, 1996)
A. Elementary integer computations B. Transcendental functions C. Elementary polynomial functions D. Polynomial factorization
A. Elementary integer computations: The tests are run with N = 100, 1000, 10000, 100000 decimal digits. Precompute x1 = floor((sqrt(5)+1)/2 * 10^(2N)) x2 = floor(sqrt(3) * 10^N) x3 = 10^N+1 Then time the following operations: 1. Multiplication x1*x2, 2. Division (with remainder) x1 / x2, 3. integer_sqrt(x3), 4. gcd(x1,x2), A'. (from Pari) u=1;v=1;p=1;q=1;for(k=1..1000){w=u+v;u=v;v=w;p=p*w;q=lcm(q,w);}
B. Transcendental functions: The tests are run with a precision of N = 100, 1000, 10000, 100000 decimal digits. Precompute x1 = sqrt(2) x2 = sqrt(3) x3 = log(2) Then time the following operations: 1. Multiplication x1*x2, 2. Square root sqrt(x3), 3. pi (once), 4. Euler's constant C (once), 5. e (once), 6. exp(-x1), 7. log(x2), 8. sin(5*x1), 9. cos(5*x1), 10. asin(x3), 11. acos(x3), 12. atan(x3), 13. sinh(x2), 14. cosh(x2), 15. asinh(x3), 16. acosh(1+x3), 17. atanh(x3).
C. Univariate polynomials: The tests are run with degree N = 100, 1000, and with coefficient bound M = 10^9, 10^20. Precompute p1(X) = sum(i=0..2N, (floor(sqrt(5)*M*i) mod M)*(-1)^i * X^i) p2(X) = sum(i=0..N, (floor(sqrt(3)*M*i) mod M) * x^i Then time the following operations: 1. Multiplication p1(X)*p2(X), 2. Pseudo-division p1(X)*c^N = p2(X)*q(X)+r(X), 3. gcd(p1(X),p2(X)).
D. Factorization of univariate polynomials: The benchmark by J. von zur Gathen. For N = 500, precompute p := smallest prime >= pi*2^N. Then time the following operation: 1. Factorize X^N+X+1 mod p in the ring F_p[X]. [von zur Gathen: A Polynomial Factorization Challenge. SIGSAM Bulletin 26,2 (1992), 22-24.]
|