|
|
Algorithms:
Niels Moeller's subquadratic GCD
- polynomial division and gcd - polynomial documentation 7. add combinatorial, linear algebra, factorization, polynomial functions as in SAC-2. 7. finite fields, e.g. - gf256_log_2, gf256_antilog_2, gf256_power_of_2, gf256_add, gf256_minus, gf256_subtract, gf256_mul, gf256_inv, gf256_div, gf256_product, gf256_exp, gf256_term, gfmul, gfadd, gfinv, gfexp. more polynomial operations: x(), power, >>, <<, division, scalmult, content, primitivepart, gcd, xgcd, no_of_real_roots, factorization. modular polynomials: powmod etc. 7. chinese remainder algorithm, maybe Hensel-lifting as in Magnum. 8. factor and primality testing for small integers 8. primality test in Z: + polynomials cl_MUP_MI, cl_MUP_I use integer FFT for multiplication in cl_UP_MI and cl_MUP_MI + - Pollard rho + - complex values of j() - Hilbert polynomial for j() 7.6.1 + roots of polynomials mod N 1.6.1 + - elliptic curves, Jacobi representation - m.P on elliptic curve + Atkin's algorithm 10. factoring in Z: - small prime table, - Pollard rho, - multiple polynomial quadratic sieve
Document the timing class
|