sp
1 year ago
6 changed files with 385 additions and 0 deletions
-
BINall_positions_v2.pickle
-
118evaluate.py
-
BINinit.png
-
9install.sh
-
69query_sample_factory_checkpoint.py
-
189rom_evaluate.py
@ -0,0 +1,118 @@ |
|||
import time, re, sys, csv, os |
|||
import gym |
|||
from PIL import Image |
|||
from copy import deepcopy |
|||
from dataclasses import dataclass, field |
|||
import numpy as np |
|||
|
|||
from matplotlib import pyplot as plt |
|||
import readchar |
|||
|
|||
def string_to_action(action): |
|||
if action == "left": |
|||
return 2 |
|||
if action == "right": |
|||
return 1 |
|||
if action == "noop": |
|||
return 0 |
|||
return 0 |
|||
|
|||
scheduler_file = "x80_y128_pos8.sched" |
|||
def convert(tuples): |
|||
return dict(tuples) |
|||
@dataclass(frozen=True) |
|||
class State: |
|||
x: int |
|||
y: int |
|||
ski_position: int |
|||
|
|||
|
|||
def parse_scheduler(scheduler_file): |
|||
scheduler = dict() |
|||
try: |
|||
with open(scheduler_file, "r") as f: |
|||
file_content = f.readlines() |
|||
for line in file_content: |
|||
if not "move=0" in line: continue |
|||
stateMapping = convert(re.findall(r"([a-zA-Z_]*[a-zA-Z])=(\d+)?", line)) |
|||
#print("stateMapping", stateMapping) |
|||
choice = re.findall(r"{(left|right|noop)}", line) |
|||
if choice: choice = choice[0] |
|||
#print("choice", choice) |
|||
state = State(int(stateMapping["x"]), int(stateMapping["y"]), int(stateMapping["ski_position"])) |
|||
scheduler[state] = choice |
|||
return scheduler |
|||
|
|||
except EnvironmentError: |
|||
print("TODO file not available. Exiting.") |
|||
sys.exit(1) |
|||
|
|||
env = gym.make("ALE/Skiing-v5")#, render_mode="human") |
|||
#env = gym.wrappers.ResizeObservation(env, (84, 84)) |
|||
#env = gym.wrappers.GrayScaleObservation(env) |
|||
|
|||
|
|||
observation, info = env.reset() |
|||
y = 40 |
|||
standstillcounter = 0 |
|||
def update_y(y, ski_position): |
|||
y_update = 0 |
|||
global standstillcounter |
|||
if ski_position in [6,7, 8,9]: |
|||
standstillcounter = 0 |
|||
y_update = 16 |
|||
elif ski_position in [4,5, 10,11]: |
|||
standstillcounter = 0 |
|||
y_update = 12 |
|||
elif ski_position in [2,3, 12,13]: |
|||
standstillcounter = 0 |
|||
y_update = 8 |
|||
elif ski_position in [1, 14] and standstillcounter >= 5: |
|||
if standstillcounter >= 8: |
|||
print("!!!!!!!!!! no more x updates!!!!!!!!!!!") |
|||
y_update = 0 |
|||
elif ski_position in [1, 14]: |
|||
y_update = 4 |
|||
|
|||
if ski_position in [1, 14]: |
|||
standstillcounter += 1 |
|||
return y_update |
|||
|
|||
def update_ski_position(ski_position, action): |
|||
if action == 0: |
|||
return ski_position |
|||
elif action == 1: |
|||
return min(ski_position+1, 14) |
|||
elif action == 2: |
|||
return max(ski_position-1, 1) |
|||
|
|||
approx_x_coordinate = 80 |
|||
ski_position = 8 |
|||
|
|||
#scheduler = parse_scheduler(scheduler_file) |
|||
j = 0 |
|||
for _ in range(1000000): |
|||
j += 1 |
|||
#action = env.action_space.sample() # agent policy that uses the observation and info |
|||
#action = int(repr(readchar.readchar())[1]) |
|||
#action = string_to_action(scheduler.get(State(approx_x_coordinate, y, ski_position), "noop")) |
|||
action = 0 |
|||
#ski_position = update_ski_position(ski_position, action) |
|||
#y_update = update_y(y, ski_position) |
|||
#y += y_update if y_update else 0 |
|||
|
|||
#old_x = deepcopy(approx_x_coordinate) |
|||
#approx_x_coordinate = int(np.mean(np.where(observation[:,:,1] == 92)[1])) |
|||
#print(f"Action: {action},\tski position: {ski_position},\ty_update: {y_update},\ty: {y},\tx: {approx_x_coordinate},\tx_update:{approx_x_coordinate - old_x}") |
|||
observation, reward, terminated, truncated, info = env.step(action) |
|||
if terminated or truncated: |
|||
observation, info = env.reset() |
|||
break |
|||
|
|||
img = Image.fromarray(observation) |
|||
img.save(f"images/{j:05}.png") |
|||
#observation, reward, terminated, truncated, info = env.step(0) |
|||
#observation, reward, terminated, truncated, info = env.step(0) |
|||
#observation, reward, terminated, truncated, info = env.step(0) |
|||
#observation, reward, terminated, truncated, info = env.step(0) |
|||
env.close() |
After Width: 160 | Height: 210 | Size: 1.0 KiB |
@ -0,0 +1,9 @@ |
|||
#!/bin/bash |
|||
|
|||
# aptitude dependencies |
|||
sudo apt install python3.8-venv python3-tk |
|||
python3 -m pip install --user virtualenv |
|||
python3 -m venv env |
|||
|
|||
source env/bin/activate |
|||
which python3 |
@ -0,0 +1,69 @@ |
|||
import time |
|||
from collections import deque |
|||
from typing import Dict, Tuple |
|||
|
|||
import gymnasium as gym |
|||
import numpy as np |
|||
import torch |
|||
from torch import Tensor |
|||
|
|||
from sample_factory.algo.learning.learner import Learner |
|||
from sample_factory.algo.sampling.batched_sampling import preprocess_actions |
|||
from sample_factory.algo.utils.action_distributions import argmax_actions |
|||
from sample_factory.algo.utils.env_info import extract_env_info |
|||
from sample_factory.algo.utils.make_env import make_env_func_batched |
|||
from sample_factory.algo.utils.misc import ExperimentStatus |
|||
from sample_factory.algo.utils.rl_utils import make_dones, prepare_and_normalize_obs |
|||
from sample_factory.algo.utils.tensor_utils import unsqueeze_tensor |
|||
from sample_factory.cfg.arguments import load_from_checkpoint |
|||
from sample_factory.huggingface.huggingface_utils import generate_model_card, generate_replay_video, push_to_hf |
|||
from sample_factory.model.actor_critic import create_actor_critic |
|||
from sample_factory.model.model_utils import get_rnn_size |
|||
from sample_factory.utils.attr_dict import AttrDict |
|||
from sample_factory.utils.typing import Config, StatusCode |
|||
from sample_factory.utils.utils import debug_log_every_n, experiment_dir, log |
|||
|
|||
from sf_examples.atari.train_atari import parse_atari_args, register_atari_components |
|||
|
|||
class SampleFactoryNNQueryWrapper: |
|||
def setup(self): |
|||
register_atari_components() |
|||
cfg = parse_atari_args() |
|||
actor_critic = create_actor_critic(cfg, gym.spaces.Dict({"obs": gym.spaces.Box(0, 255, (4, 84, 84), np.uint8)}), gym.spaces.Discrete(3)) # TODO |
|||
actor_critic.eval() |
|||
|
|||
device = torch.device("cpu") # ("cpu" if cfg.device == "cpu" else "cuda") |
|||
actor_critic.model_to_device(device) |
|||
|
|||
policy_id = 0 #cfg.policy_index |
|||
#name_prefix = dict(latest="checkpoint", best="best")[cfg.load_checkpoint_kind] |
|||
name_prefix = "best" |
|||
checkpoints = Learner.get_checkpoints(Learner.checkpoint_dir(cfg, policy_id), f"{name_prefix}_*") |
|||
checkpoint_dict = Learner.load_checkpoint(checkpoints, device) # torch.load(...) |
|||
actor_critic.load_state_dict(checkpoint_dict["model"]) |
|||
|
|||
rnn_states = torch.zeros([1, get_rnn_size(cfg)], dtype=torch.float32, device=device) |
|||
|
|||
self.rnn_states = rnn_states |
|||
self.actor_critic = actor_critic |
|||
|
|||
def __init__(self): |
|||
self.setup() |
|||
|
|||
|
|||
def query(self, obs): |
|||
with torch.no_grad(): |
|||
normalized_obs = prepare_and_normalize_obs(self.actor_critic, obs) |
|||
policy_outputs = self.actor_critic(normalized_obs, self.rnn_states) |
|||
|
|||
# sample actions from the distribution by default |
|||
actions = policy_outputs["actions"] |
|||
|
|||
action_distribution = self.actor_critic.action_distribution() |
|||
actions = argmax_actions(action_distribution) |
|||
|
|||
if actions.ndim == 1: |
|||
actions = unsqueeze_tensor(actions, dim=-1) |
|||
|
|||
rnn_states = policy_outputs["new_rnn_states"] |
|||
return actions[0][0].item() |
@ -0,0 +1,189 @@ |
|||
import sys |
|||
from random import randrange |
|||
from ale_py import ALEInterface, SDL_SUPPORT, Action |
|||
from colors import * |
|||
from PIL import Image |
|||
from matplotlib import pyplot as plt |
|||
import cv2 |
|||
import pickle |
|||
import queue |
|||
|
|||
from copy import deepcopy |
|||
|
|||
import numpy as np |
|||
|
|||
import readchar |
|||
|
|||
from sample_factory.algo.utils.tensor_dict import TensorDict |
|||
from query_sample_factory_checkpoint import SampleFactoryNNQueryWrapper |
|||
|
|||
import time |
|||
|
|||
|
|||
def input_to_action(char): |
|||
if char == "0": |
|||
return Action.NOOP |
|||
if char == "1": |
|||
return Action.RIGHT |
|||
if char == "2": |
|||
return Action.LEFT |
|||
if char == "3": |
|||
return "reset" |
|||
if char == "4": |
|||
return "set_x" |
|||
if char == "5": |
|||
return "set_vel" |
|||
if char in ["w", "a", "s", "d"]: |
|||
return char |
|||
|
|||
ski_position_counter = {1: (Action.LEFT, 40), 2: (Action.LEFT, 35), 3: (Action.LEFT, 30), 4: (Action.LEFT, 10), 5: (Action.NOOP, 1), 6: (Action.RIGHT, 10), 7: (Action.RIGHT, 30), 8: (Action.RIGHT, 40) } |
|||
|
|||
def run_single_test(ale, nn_wrapper, x,y,ski_position, duration=200): |
|||
print(f"Running Test from x: {x:04}, y: {y:04}, ski_position: {ski_position}") |
|||
for i, r in enumerate(ramDICT[y]): |
|||
ale.setRAM(i,r) |
|||
ski_position_setting = ski_position_counter[ski_position] |
|||
for i in range(0,ski_position_setting[1]): |
|||
ale.act(ski_position_setting[0]) |
|||
ale.setRAM(14,0) |
|||
ale.setRAM(25,x) |
|||
ale.setRAM(14,180) |
|||
|
|||
all_obs = list() |
|||
for i in range(0,duration): |
|||
resized_obs = cv2.resize(ale.getScreenGrayscale() , (84,84), interpolation=cv2.INTER_AREA) |
|||
all_obs.append(resized_obs) |
|||
if len(all_obs) >= 4: |
|||
stack_tensor = TensorDict({"obs": np.array(all_obs[-4:])}) |
|||
action = nn_wrapper.query(stack_tensor) |
|||
ale.act(input_to_action(str(action))) |
|||
else: |
|||
ale.act(Action.NOOP) |
|||
time.sleep(0.005) |
|||
|
|||
ale = ALEInterface() |
|||
|
|||
|
|||
if SDL_SUPPORT: |
|||
ale.setBool("sound", True) |
|||
ale.setBool("display_screen", True) |
|||
|
|||
# Load the ROM file |
|||
rom_file = "/home/spranger/research/Skiing/env/lib/python3.8/site-packages/AutoROM/roms/skiing.bin" |
|||
ale.loadROM(rom_file) |
|||
|
|||
# Get the list of legal actions |
|||
|
|||
with open('all_positions_v2.pickle', 'rb') as handle: |
|||
ramDICT = pickle.load(handle) |
|||
#ramDICT = dict() |
|||
#for i,r in enumerate(ramDICT[235]): |
|||
# ale.setRAM(i,r) |
|||
|
|||
y_ram_setting = 60 |
|||
x = 70 |
|||
|
|||
|
|||
nn_wrapper = SampleFactoryNNQueryWrapper() |
|||
#run_single_test(ale, nn_wrapper, 70,61,5) |
|||
#input("") |
|||
run_single_test(ale, nn_wrapper, 30,61,5,duration=1000) |
|||
run_single_test(ale, nn_wrapper, 114,170,7) |
|||
run_single_test(ale, nn_wrapper, 124,170,5) |
|||
run_single_test(ale, nn_wrapper, 134,170,2) |
|||
run_single_test(ale, nn_wrapper, 120,185,1) |
|||
run_single_test(ale, nn_wrapper, 134,170,8) |
|||
run_single_test(ale, nn_wrapper, 85,195,8) |
|||
velocity_set = False |
|||
for episode in range(10): |
|||
total_reward = 0 |
|||
j = 0 |
|||
while not ale.game_over(): |
|||
if not velocity_set: ale.setRAM(14,0) |
|||
j += 1 |
|||
a = input_to_action(repr(readchar.readchar())[1]) |
|||
#a = Action.NOOP |
|||
|
|||
if a == "w": |
|||
y_ram_setting -= 1 |
|||
if y_ram_setting <= 61: |
|||
y_ram_setting = 61 |
|||
for i, r in enumerate(ramDICT[y_ram_setting]): |
|||
ale.setRAM(i,r) |
|||
ale.setRAM(25,x) |
|||
ale.act(Action.NOOP) |
|||
elif a == "s": |
|||
y_ram_setting += 1 |
|||
if y_ram_setting >= 1950: |
|||
y_ram_setting = 1945 |
|||
for i, r in enumerate(ramDICT[y_ram_setting]): |
|||
ale.setRAM(i,r) |
|||
ale.setRAM(25,x) |
|||
ale.act(Action.NOOP) |
|||
elif a == "a": |
|||
x -= 1 |
|||
if x <= 0: |
|||
x = 0 |
|||
ale.setRAM(25,x) |
|||
ale.act(Action.NOOP) |
|||
elif a == "d": |
|||
x += 1 |
|||
if x >= 144: |
|||
x = 144 |
|||
ale.setRAM(25,x) |
|||
ale.act(Action.NOOP) |
|||
|
|||
|
|||
elif a == "reset": |
|||
ram_pos = input("Ram Position:") |
|||
for i, r in enumerate(ramDICT[int(ram_pos)]): |
|||
ale.setRAM(i,r) |
|||
ale.act(Action.NOOP) |
|||
# Apply an action and get the resulting reward |
|||
elif a == "set_x": |
|||
x = int(input("X:")) |
|||
ale.setRAM(25, x) |
|||
ale.act(Action.NOOP) |
|||
elif a == "set_vel": |
|||
vel = input("Velocity:") |
|||
ale.setRAM(14, int(vel)) |
|||
ale.act(Action.NOOP) |
|||
velocity_set = True |
|||
else: |
|||
reward = ale.act(a) |
|||
ram = ale.getRAM() |
|||
#if j % 2 == 0: |
|||
# y_pixel = int(j*1/2) + 55 |
|||
# ramDICT[y_pixel] = ram |
|||
# print(f"saving to {y_pixel:04}") |
|||
# if y_pixel == 126 or y_pixel == 235: |
|||
# input("") |
|||
|
|||
int_old_ram = list(map(int, oldram)) |
|||
int_ram = list(map(int, ram)) |
|||
difference = list() |
|||
for o, r in zip(int_old_ram, int_ram): |
|||
difference.append(r-o) |
|||
|
|||
oldram = deepcopy(ram) |
|||
#print(f"player_x: {ram[25]},\tclock_m: {ram[104]},\tclock_s: {ram[105]},\tclock_ms: {ram[106]},\tscore: {ram[107]}") |
|||
print(f"player_x: {ram[25]},\tplayer_y: {y_ram_setting}") |
|||
#print(f"y_0: {ram[86]}, y_1: {ram[87]}, y_2: {ram[88]}, y_3: {ram[89]}, y_4: {ram[90]}, y_5: {ram[91]}, y_6: {ram[92]}, y_7: {ram[93]}, y_8: {ram[94]}") |
|||
|
|||
#for i, r in enumerate(ram): |
|||
# print('{:03}:{:02x} '.format(i,r), end="") |
|||
# if i % 16 == 15: print("") |
|||
#print("") |
|||
#for i, r in enumerate(difference): |
|||
# string = '{:02}:{:03} '.format(i%100,r) |
|||
# if r != 0: |
|||
# print(color(string, fg='red'), end="") |
|||
# else: |
|||
# print(string, end="") |
|||
# if i % 16 == 15: print("") |
|||
print("Episode %d ended with score: %d" % (episode, total_reward)) |
|||
input("") |
|||
|
|||
with open('all_positions_v2.pickle', 'wb') as handle: |
|||
pickle.dump(ramDICT, handle, protocol=pickle.HIGHEST_PROTOCOL) |
|||
ale.reset_game() |
Write
Preview
Loading…
Cancel
Save
Reference in new issue