|
|
#include "Grid.h"
#include <boost/algorithm/string/find.hpp>
#include <algorithm>
Grid::Grid(cells gridCells, cells background, const std::map<coordinates, float> &stateRewards, const float probIntended, const float faultyProbability) : allGridCells(gridCells), background(background), stateRewards(stateRewards), probIntended(probIntended), faultyProbability(faultyProbability) { cell max = allGridCells.at(allGridCells.size() - 1); maxBoundaries = std::make_pair(max.column - 1, max.row - 1); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(walls), [](cell c) { return c.type == Type::Wall; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(lava), [](cell c) { return c.type == Type::Lava; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(floor), [](cell c) { return c.type == Type::Floor; }); // TODO CHECK IF ALL AGENTS ARE ADDED TO FLOOR
std::copy_if(background.begin(), background.end(), std::back_inserter(slipperyNorth), [](cell c) { return c.type == Type::SlipperyNorth; }); std::copy_if(background.begin(), background.end(), std::back_inserter(slipperyEast), [](cell c) { return c.type == Type::SlipperyEast; }); std::copy_if(background.begin(), background.end(), std::back_inserter(slipperySouth), [](cell c) { return c.type == Type::SlipperySouth; }); std::copy_if(background.begin(), background.end(), std::back_inserter(slipperyWest), [](cell c) { return c.type == Type::SlipperyWest; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(lockedDoors), [](cell c) { return c.type == Type::LockedDoor; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(unlockedDoors), [](cell c) { return c.type == Type::Door; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(goals), [](cell c) { return c.type == Type::Goal; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(keys), [](cell c) { return c.type == Type::Key; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(boxes), [](cell c) { return c.type == Type::Box; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(balls), [](cell c) { return c.type == Type::Ball; }); std::copy_if(gridCells.begin(), gridCells.end(), std::back_inserter(adversaries), [](cell c) { return c.type == Type::Adversary; }); agent = *std::find_if(gridCells.begin(), gridCells.end(), [](cell c) { return c.type == Type::Agent; }); floor.push_back(agent);
agentNameAndPositionMap.insert({ "Agent", agent.getCoordinates() }); for(auto const& adversary : adversaries) { std::string color = adversary.getColor(); color.at(0) = std::toupper(color.at(0)); try { auto success = agentNameAndPositionMap.insert({ color, adversary.getCoordinates() }); floor.push_back(adversary); if(!success.second) { throw std::logic_error("Agent with " + color + " already present\n"); } } catch(const std::logic_error& e) { std::cerr << "Expected agents colors to be different. Agent with color : '" << color << "' already present." << std::endl; throw; } } for(auto const& key : keys) { std::string color = key.getColor(); try { auto success = keyNameAndPositionMap.insert({color, key.getCoordinates() }); if (!success.second) { throw std::logic_error("Multiple keys with same color not supported " + color + "\n"); } } catch(const std::logic_error& e) { std::cerr << "Expected key colors to be different. Key with color : '" << color << "' already present." << std::endl; throw; } } for(auto const& color : allColors) { cells cellsOfColor; std::copy_if(background.begin(), background.end(), std::back_inserter(cellsOfColor), [&color](cell c) { return c.type == Type::Floor && c.color == color; }); if(cellsOfColor.size() > 0) { backgroundTiles.emplace(color, cellsOfColor); } }
if(adversaries.empty()) { modelType = prism::ModelType::MDP; } else { modelType = prism::ModelType::SMG; } }
std::ostream& operator<<(std::ostream& os, const Grid& grid) { int lastRow = 1; for(auto const& cell : grid.allGridCells) { if(lastRow != cell.row) os << std::endl; os << static_cast<char>(cell.type) << static_cast<char>(cell.color); lastRow = cell.row; } return os; }
cells Grid::getGridCells() { return allGridCells; }
bool Grid::isBlocked(coordinates p) { return isWall(p); }
bool Grid::isWall(coordinates p) { return std::find_if(walls.begin(), walls.end(), [p](cell cell) { return cell.row == p.second && cell.column == p.first; }) != walls.end(); }
void Grid::applyOverwrites(std::string& str, std::vector<Configuration>& configuration) { for (auto& config : configuration) { if (!config.overwrite_) { continue; } for (auto& index : config.indexes_) { size_t start_pos; std::string search;
if (config.type_ == ConfigType::Formula) { search = "formula " + config.identifier_; } else if (config.type_ == ConfigType::Label) { search = "label " + config.identifier_; } else if (config.type_ == ConfigType::Module) { search = config.identifier_; } else if (config.type_ == ConfigType::Constant) { search = config.identifier_; }
auto iter = boost::find_nth(str, search, index); start_pos = std::distance(str.begin(), iter.begin()); size_t end_pos = str.find(';', start_pos) + 1;
if (end_pos != std::string::npos && end_pos != 0) { std::string expression = config.expression_; str.replace(start_pos, end_pos - start_pos , expression); } } } } void Grid::printToPrism(std::ostream& os, std::vector<Configuration>& configuration) { cells northRestriction, eastRestriction, southRestriction, westRestriction; cells walkable = floor; walkable.insert(walkable.end(), goals.begin(), goals.end()); walkable.insert(walkable.end(), boxes.begin(), boxes.end()); walkable.insert(walkable.end(), lava.begin(), lava.end()); walkable.insert(walkable.end(), keys.begin(), keys.end()); walkable.insert(walkable.end(), balls.begin(), balls.end());
for(auto const& c : walkable) { if(isWall(c.getNorth())) northRestriction.push_back(c); if(isWall(c.getEast())) eastRestriction.push_back(c); if(isWall(c.getSouth())) southRestriction.push_back(c); if(isWall(c.getWest())) westRestriction.push_back(c); }
std::map<std::string, cells> wallRestrictions = {{"North", northRestriction}, {"East", eastRestriction}, {"South", southRestriction}, {"West", westRestriction}}; std::map<std::string, cells> slipperyTiles = {{"North", slipperyNorth}, {"East", slipperyEast}, {"South", slipperySouth}, {"West", slipperyWest}};
std::vector<AgentName> agentNames; std::transform(agentNameAndPositionMap.begin(), agentNameAndPositionMap.end(), std::back_inserter(agentNames), [](const std::map<AgentNameAndPosition::first_type,AgentNameAndPosition::second_type>::value_type &pair){return pair.first;}); std::string agentName = agentNames.at(0);
prism::PrismFormulaPrinter formulas(os, wallRestrictions, walls, lockedDoors, unlockedDoors, keys, slipperyTiles, lava, goals, agentNameAndPositionMap, faultyProbability > 0.0); prism::PrismModulesPrinter modules(os, modelType, maxBoundaries, lockedDoors, unlockedDoors, keys, slipperyTiles, agentNameAndPositionMap, configuration, probIntended, faultyProbability, !lava.empty(), !goals.empty());
modules.printModelType(modelType); for(const auto &agentName : agentNames) { formulas.print(agentName); } if(agentNameAndPositionMap.size() > 1) formulas.printCollisionFormula(agentName); formulas.printInitStruct();
modules.print();
//if(!stateRewards.empty()) {
// modules.printRewards(os, agentName, stateRewards, lava, goals, backgroundTiles);
//}
//if (!configuration.empty()) {
// modules.printConfiguration(os, configuration);
//}
}
|