TU

Grazm
SCIENCE

Logic and Computability
Lecture 5 PASSION

Introduction to Z3

Bettina Konighofer Stefan Pranger
bettina.koenighofer@iaik.tugraz.at stefan.pranger@iaik.tugraz.at

= What is Z3?

= Solver for Satisfiability Modulo Theories

= What is Z3?

= Solver for Satisfiability Modulo Theories
= we know how to check satisfiability v/
= ... until now: Only propositional logic!

= 73 allows us to efficiently answer decision problems including
" |ntegers, Reals, Arithmetic
= BitVectors, uninterpreted Functions, Arrays,
" etc.

= More on Theories starting from next week
" Today: Basics Principles of Z3 and First Problems

= Background

= Developed by Microsoft Research
= https://github.com/Z3Prover/z3

Christoph Lev Leonardo
Wintersteiger = Nachmanson de Moura

Contributors 281

Nikolaj

Bj@rner L a ‘5" & ‘

“900CE®

= SMT-LIB2 - Astandardized language for Problems in SMT

https://github.com/Z3Prover/z3

Principles

" s —a A (aV b) satisfiable?
* What do we need to describe a problem for the solver?

= Variables (of a specific Sort),

(declare-const a Bool)
(declare-const b Bool)

= Constraints, and

(assert (not a))
(assert (or a b))

" Checking for Satisfiability
(check-sat)

- A Simple Example in SMT-LIB2

(declare-const a Bool)
(declare-const b Bool)
(assert (not a))
(assert (or a b))
(check-sat)
(get-model)

Background

= Developed by Microsoft Research
= https://github.com/Z3Prover/z3

Christoph Lev Leonardo
Wintersteiger = Nachmanson de Moura

Contributors 281

Nikolaj

Bj@rner L a ‘5" & .

“900CE®

= SMT-LIB2 - Astandardized language for Problems in SMT
= AP| for C++, Python, Julia, etc.

https://github.com/Z3Prover/z3

Installing

= We will use the Python API:
" plip 1nstall z3-solver

= Optionally, you may install z3 natively:
= sudo apt—-get 1nstall z3 (Viaaptitude for Ubuntu, etc.)
» https://www.nuget.org/packages/Microsoft.Z3/ (windows)
= https://ifmc.github.io/z3-play (online)

https://www.nuget.org/packages/Microsoft.Z3/
https://jfmc.github.io/z3-play

= Python API

= User-friendly interface for SMT-LIB?2
= Used in the Programming Assignment

= Variables (of a specific Sort),
(declare-const a Bool)
(declare-const b Bool)
= Constraints, and
(assert (not a))
(assert (or a b))

= Checking for Satisfiability
(check-sat)

m—)

m—)
—)

a
b

Bool ("a")
Bool ("b")

solver = Solver ()
solver.add (Not(a))
solver.add (Or (a,b))

solver.check ()

Python API

from z3 import *
a, b = Bools("a b")

solver = Solver ()
solver.add (Not (b))
solver.add (Or(a,b))

print (solver.sexpr())
result = solver.check ()
model = solver.model ()
print (result)

print (model)

= Python API

= Constraints

(assert (not a)) solver.add (Not(a))
(assert (or a b)) ‘ solver.add (Or (a,b))

= Provides Methods for Connectives:
= And(),Or (), Not (), Implies (), == A, etc.

= Method to check whether two statements can be distinct:
= Distinct(a,b)

= Operator overloading:
=+ - >> <<, etc.

= Reference: https://z3prover.github.io/api/html/namespacez3py.html

https://z3prover.github.io/api/html/namespacez3py.html

A First Example

= We want to show that the following statements are equal:
P —q
"pVq

A First Example

"pP 2q==-pVvVq’

from z3 import *

solver = Solver()
a, b = Bools("a b")
l, r = Bools("1 ")

solver.add (1l == Implies(a, b))
solver.add(r == Or (Not(a), b))
solver.add (Distinct(r,1l))

result = solver.check()
print (result)

=l Back to SMT-LIB2

"pP 2 q=="pAq?

from z3 import *

solver = Solver ()
a, b = Bools("a b")
l, r = Bools("1 ")

solver.add (1l == Implies(a, b))
solver.add(r == Or (Not(a), b))
solver.add (Distinct(r, 1))
print (solver.sexpr())

result = solver.check()
print (result)

H BitVectors

= 73 allows us to use so-called theories
= \We have a first look at bitvectors

= Syntax:
" bv = BitVector ("bv", <size>)

= BitVectors respect under-/overflow behaviour!
" |n contrast to Z3’s integers

Operations on BitVectors

= The BitVector Sort respects overloaded operators:
"> <=+, -, <<, >> /) etc.
= Caution: These are signed interpretations
" Use ULT, UGT, ULE for unsigned interpretations

Equivalence Checking for BitVectors

= We want to prove the equivalence of the following
" (((y & x)*=2) + (y + x))
[| X @ y

= Weird XOR

from z3 import *

X = BitVec('x', 32)

y = BitVec('y', 32)

output = BitVec('output ', 32)
s = Solver ()

s .add (x*y==output)
s.add (Distinct(((y & x)* -2) + (y + x) ,output))

print (s.check())

Operations on BitVectors

= The BitVector Sort respects overloaded operators:
"< > <=, +, -, etc.
= Caution: These are signed interpretations
" Use ULT, UGT, ULE for unsigned interpretations

= Overflow and Underflow
" BVAddNoOverflow, BVAddNoUnderflow
" BVMulNoOverflow, BVMulNoUnderflow

Overflow Behaviour

= \We want to check whether the statement TODO
" x + 1 < x = 1)

Variables in a Satisfying Model

= Variables and Expressions are stored in z3-specific classes

" We can use solver.model () .decls () toiterate through all
declared variables
= Use .as_long() to convert a BitVector to a Python Integer

model = solver.model ()
for var in solver.model.decls () :
print (f"{var}: {model[var]} (:{type (model[var])})")

Overflow Behaviour

= \We want to check whether the statement TODO
" x + 1 < x = 1)

= We need to add
" BVNoOverflow(x,1l, True)
" BVNoUnderflow(x,1l, True)

= Functions that evaluate to False when Over-/Underflow would
occur in the model

Assighment Sheet

= 4 Exercises + 1 Bonus Exercise

" You are allowed to work in groups of 2
= |f you do so, please add your information into the README

= Deadline: 05. 06. 2024

= Outline — Part Il

= TntSort + Z3 Built-in Sorts
= Quantifiers

= Custom Sorts

= Uninterpreted Functions

Working with Integers

" IntSort
" <L,> <=, ==, 4, -, etc.

LY’

= Working with Integers

" IntSort
" <L,> <=, ==, 4+, -, etc.

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.

{ CHOTCHKIES RESTAURAWT

«— APPENZERS —
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HOT WINGS 3.55
MOZZARELA STICKS 420
SAMPLER PLATE 5.80

—— SANDWICHES ~—

1 . EXACTLY? M.

HERE, THESE PAPERS ON THE KNARSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE 51X OTHER
TABLES TO GET TD —

~AG FRST AS POSSIBLE, (F COURSE. WANT
SOMETHING ON TRAVELING SALESNANT /

\
(XIER

RARBF E L 5

Example

#!/usr/bin/python3
from z3 import *

a,b,c,d,e,f = Ints('abcde f')
s = Solver ()
s.add (215*a + 275*b + 335*c + 355*d + 420*e + 580*f == 1505,
a>=0, b>=0, ¢c>=0, d>=0, e>=0, £>=0)
result = s.check()
1f result == sat:
print (s.model ())

Variables in a Satisfying Model

= Variables and Expressions are stored in z3-specific classes

" We can use solver.model () .decls () toiterate through all

declared variables
" Use.as long () toconverta BitVector, Int, Real, etc. to a

Python Integer

Example contd.

results=][]
while True:

if s.check() == sat:
m = s.model ()
print (m)

results.append (m)

block = [a !'= m[a].as_long(), b '= m[b] .as long(), c !'= m[c]
m[d] .as_long(), e '= m[e] .as long(), £ !'= m[f] .as long()]

#Different approach: Iterate over all entries in the model
block = []

for d in m.decls():
print(d, type(d), d(), type(d()), m[d], type(m[d]))
c = d()
block.append(c !'= m[d].as_long())

s.add (Or (block))
else:

print ("All results enumerated, total=", len(results))
break

.as_long(), d !'=

= Z3 Built-in Sorts

" BoolSort, BitVecSort, IntSort, RealSort
= Sequences, Strings

" Arrays

Quantifiers

= 73 offers ForAll () and Exists ()

= Usage: ForAll (<vars>, <formula>)

Example

from z3 import *
X, v = Ints("x y")

solver = Solver ()
solver.add (ForAll([x,y], Implies (And(x<0,y<0), x+y<0)))
#solver.add (ForAll ([x,y], Implies (And(x<0,y<0), x+y>0)))

result = solver.check()
print (solver.sexpr())
print (result)

Example

» 15. [M26] J. H. Quick noticed that ((x+2)$®3) —2

= ((z—2)@3)+2 for all z. Find
all constants a and b such that ((z+a) @ b) —a = ((z —

a) @ b) + a is an identity.

Example

» 15. [M26] J. H. Quick noticed that ((r+2)@3) -2 = ((z—2)®3)+2 for all . Find
all constants a and b such that ((z+a)@ b) —a = ((x — a) © b) + a is an identity.

= We want to use Z3 to find all constants, s.t.

-Vx((x+a)@b) —a=((x—a)69b)+a

Example
-Vx((x+a)69b) —a=((x—a)€|9b)+a

from z3 import *

s = Solver ()

a, b = BitVecs('a b', 4)
X = BitVec('x', 4)

s .push ()
s.add (ForAll (x, ((x+a)”?b)-a == ((x-a)”b)+a))

results=[]
while True:
if s.check() == sat:
m = s.model(); results.append (m)
block = [a !'= m[a].as_long(), b !'= m[b].as long()]
s.add (Or (block))
else:
print ("results total=", len(results))
break

Example
-Vx((x+a)69b) —a=((x—a)€Bb)+a

= Let’s also use Z3 to find constants such that the equality does not
hold

Example
-Vx((x+a)69b) —a=((x—a)€|9b)+a

= Let’s also use Z3 to find constants such that the equality does not
hold

" Use solver.push () and solver.pop () to store and restore
solver states

Example
-Vx((x+a)69b) —a=((x—a)€|9b)+a

= Let’s also use Z3 to find constants such that the equality does not
hold

from z3 import *

s = Solver ()

a, b BitVecs('a b', 4)
X BitVec('x', 4)

s .push ()

s.add (ForAll (x, ((x+a)”b)-a == ((x-a)”?b)+a))
s.pop ()

s.add (Exists(x, ((x+a)”?b)-a !'= ((x-a)”?b)+a))
result = s.check()

print (result)

print (s.sexpr())

if result == sat:
print (s.model ())

Custom Sorts — Datatypes

= Beyond the built-in Sorts
= Datatypes allow us to define more complex data structures

Custom Sorts — Datatypes

= Beyond the built-in Sorts
= Datatypes allow us to define more complex data structures

= Simple Case: Enum

ColoursDatatype = Datatype("Colour")
ColoursDatatype.declare ("RED")
ColoursDatatype.declare ("GREEN")
ColoursDatatype.declare ("BLUE")
ColoursDatatype.declare ("MAGENTA")
ColoursSort = ColoursDatatype.create ()

X = Const("x", ColoursSort)

Uninterpreted Functions

= Generally, we have:
" fiAyg X ..XA4, > B
= f maps values from Ay X ...X A,,toB

Uninterpreted Functions

= Generally, we have:
" fiAyg X ..XA4, > B
= f maps values from Ay X ...X A, to B

= Uninterpreted Functions have no know “structure”
= 73 decides the output based on the constraint
= f can be seen as a lookup-table

Uninterpreted Functions

= Generally, we have:
" fiAyg X ..XA4, > B
= f maps values from Ay X ...X A, to B

= Uninterpreted Functions have no know “structure”
= 73 decides the output based on the constraint
= f can be seen as a lookup-table

= f = Function('f', IntSort (), IntSort())

Seating Arrangement Problem

" Problem Setting:
" You have to arrange a set of guests on one large table
= Some need to to be seated together
= Some must not be seated together

Seating Arrangement Problem

" Problem Setting:
" You have to arrange a set of guests on one large table
= Some need to to be seated together
= Some must not be seated together

= We can use an uninterpreted function as a mapping from guests to
seats at the table!

	Slide 1
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9:
	Slide 10:
	Slide 11:
	Slide 12:
	Slide 13:
	Slide 14:
	Slide 15:
	Slide 16:
	Slide 17:
	Slide 18:
	Slide 19:
	Slide 20:
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:
	Slide 25:
	Slide 26:
	Slide 27:
	Slide 28:
	Slide 29:
	Slide 30:
	Slide 31:
	Slide 32:
	Slide 33:
	Slide 34:
	Slide 35:
	Slide 36:
	Slide 37:
	Slide 38:
	Slide 39
	Slide 40
	Slide 41:
	Slide 42:
	Slide 43:
	Slide 44:
	Slide 45:

