
Logic and Computability SS23,
Assignment 3

Due: 30. 03. 2023, 23:59

Please pull (or download) the skeleton files from the upstream repository in order to get
started:

git pull upstream main

If you do not want to use git, you can download the skeleton file directly from the server:

https://git.pranger.xyz/sp/LAC-Practical-Assignments-2023/src/branch/main/Assignment3

If you download the file manually, please create a folder Assignment3 in your local repos-
itory.

The last programming assignment sheet consists of a single exercise. This week we are
going to play Rock-Paper-Scissors-Spock-Lizard against the computer. Your task is
to collect knowledge about the pseudo-random number generator that decides the choice
of the computer to predict its next choice.

1

https://git.pranger.xyz/sp/LAC-Practical-Assignments-2023/src/branch/main/Assignment3


1. [15 Points] Rock-Paper-Scissors-Spock-Lizard
For this task you need to model the computation of a linear-congruential generator.
If you want to read more about linear-congruential generators, please consult the
wikipedia.
Our opponent, the computer, computes its choice by first computing a pseudo-
random number si that is based on the previous result si−1:

si = 11 · si−1 + 12345 & 0x7fff. (1)

Its choice ci is then computed with the remainder modulo 5:

ci = si mod 5, (2)

where

• ci = 0 means Rock,
• ci = 1 means Paper,
• ci = 2 means Scissors,
• ci = 3 means Spock, and
• ci = 4 means Lizard.

Your task is to model the computation of each si, starting from s1, and use your
knowledge about the computer’s choice to tell Z3 that ci == si mod 5. Note that
you do not know the value of s0 in this scenario. (The problem would become trivial
if you would have that information!)
The skeleton code can be found in rpssl.py. The snippet contains a class RPSSLComputer
that reads a seed value (s_0) and continuously returns the next computer’s choice
by calling compute_choice().
You execute the script by passing it a value for the seed:

python3 rpssl.py <seed>.

After you have implemented the correct constraints, your script will win continuously
after a few rounds, independently of the seed value.

2

https://en.wikipedia.org/wiki/Linear_congruential_generator


Implementation

The snippet simulates the game against the computer. For all rounds j ∈ {1, . . . , i}
that you have already played you can give Z3 the information that sj has been
computed via Eq. 1 and the computer’s choice cj via Eq. 2. Adding a constraint for
Eq. 1 for the current round i + 1 will make Z3 compute a good guess for si+1. You
can use this result to come up with a winning move against the computer.
The script starts with querying the computer for preprocess_count many choices
and calls a function (add_constraint(…)) where you add the appropriate constraints
to the solver. These constraints will describe the relationship between si and si−1

and the relationship between si, ci and the computer’s choice.
After this preprocessing is done, you are going to use Z3 to compute potential good
choices for the current round i+ 1 in the game. In order to ask Z3 for a good choice
you will model the computation that the computer will make for si+1 and add this
to the solver in the function add_next_state_constraint(…).
You can then use the resulting value of si+1 from the model and compute the re-
mainder modulo 5 to beat the computer. Implement this as the return value of
get_players_choice(…) using the winning_mapping.
The special variable s_i_plus_1 will always hold the value for the current round. Af-
ter you have extracted the value for si+1 for the current round, you need to remove the
constraint for this variable and add the constraints about the round that you have al-
ready played, using add_constraint(…). Note that this loop is already implemented
for you and uses store_backtracking_point(…) and restore_backtracking_point(…)
to correctly add and remove the constraints for s_i_plus_1.
You are going to solve the task by filling in the function bodies of three different
functions:

Subtask 1. [7 Points] add_constraint(…)
In this function we give Z3 our knowledge about the rounds we have
played so far.
(a) Create a Z3 BitVector that stores 16 bits and append this to the

states list.
(b) Enforce that the newly added state evaluates to the LCG computa-

tion (1) of the previous state.
(c) Enforce that the unsigned remainder modulo 5 of the newly added

state is equal to the computer’s choice.
Hint: Use the built-in function URem(si, 5) to model the remainder.

Subtask 2. [5 Points] add_next_state_constraint(…)
In this function we tell Z3 that the computer will compute si+1 via 1:
(a) Enforce that s_i_plus_1 evaluates to the LCG computation (1) of

the previous state.

3

https://z3prover.github.io/api/html/namespacez3py.html#aec21d4855bd67ee88b5448d68c97a5d4


Subtask 3. [3 Points] get_players_choice(…)

(a) Use the model that the solver came up with and winning_mapping
to decide the your choice for the next round of the game.

4


