Logic and Computability SS23, Assignment 3

Due: 30. 03. 2023, 23:59

Please pull (or download) the skeleton files from the upstream repository in order to get started:

git pull upstream main

If you do not want to use git, you can download the skeleton file directly from the server: https://git.pranger.xyz/sp/LAC-Practical-Assignments-2023/src/branch/main/Assignment3

If you download the file manually, please create a folder Assignment3 in your local repository.

The last programming assignment sheet consists of a single exercise. This week we are going to play **Rock-Paper-Scissors-Spock-Lizard** against the computer. Your task is to collect knowledge about the *pseudo-random number generator* that decides the choice of the computer to predict its next choice.

1. [15 Points] Rock-Paper-Scissors-Spock-Lizard

For this task you need to model the computation of a *linear-congruential generator*. If you want to read more about linear-congruential generators, please consult the wikipedia.

Our opponent, the computer, computes its choice by first computing a pseudorandom number s_i that is based on the previous result s_{i-1} :

$$s_i = 11 \cdot s_{i-1} + 12345 \& 0x7fff.$$
 (1)

Its choice c_i is then computed with the remainder modulo 5:

$$c_i = s_i \mod 5, \tag{2}$$

where

- $c_i = 0$ means Rock,
- $c_i = 1$ means Paper,
- $c_i = 2$ means Scissors,
- $c_i = 3$ means Spock, and
- $c_i = 4$ means Lizard.

Your task is to model the computation of each s_i , starting from s_1 , and use your knowledge about the computer's choice to tell Z3 that $c_i == s_i \mod 5$. Note that you do not know the value of s_0 in this scenario. (The problem would become trivial if you would have that information!)

The skeleton code can be found in rpssl.py. The snippet contains a class RPSSLComputer that reads a seed value (s_0) and continuously returns the next computer's choice by calling $compute_choice()$.

You execute the script by passing it a value for the seed:

After you have implemented the correct constraints, your script will win continuously after a few rounds, independently of the seed value.

Implementation

The snippet simulates the game against the computer. For all rounds $j \in \{1, ..., i\}$ that you have already played you can give Z3 the information that s_j has been computed via Eq. 1 and the computer's choice c_j via Eq. 2. Adding a constraint for Eq. 1 for the current round i + 1 will make Z3 compute a good guess for s_{i+1} . You can use this result to come up with a winning move against the computer.

The script starts with querying the computer for preprocess_count many choices and calls a function (add_constraint(...)) where you add the appropriate constraints to the solver. These constraints will describe the relationship between s_i and s_{i-1} and the relationship between s_i , c_i and the computer's choice.

After this preprocessing is done, you are going to use Z3 to compute potential good choices for the current round i + 1 in the game. In order to ask Z3 for a good choice you will model the computation that the computer will make for s_{i+1} and add this to the solver in the function add_next_state_constraint(...).

You can then use the resulting value of s_{i+1} from the model and compute the remainder modulo 5 to beat the computer. Implement this as the return value of get_players_choice(...) using the winning_mapping.

The special variable s_{i-plus_1} will always hold the value for the current round. After you have extracted the value for s_{i+1} for the current round, you need to remove the constraint for this variable and add the constraints about the round that you have already played, using add_constraint(...). Note that this loop is already implemented for you and uses store_backtracking_point(...) and restore_backtracking_point(...) to correctly add and remove the constraints for s_{i-plus_1} .

You are going to solve the task by filling in the function bodies of three different functions:

Subtask 1. [7 Points] add constraint(...)

In this function we give Z3 our knowledge about the rounds we have played so far.

- (a) Create a Z3 BitVector that stores 16 bits and append this to the states list.
- (b) Enforce that the newly added state evaluates to the LCG computation (1) of the previous state.
- (c) Enforce that the unsigned remainder modulo 5 of the newly added state is equal to the computer's choice.

Hint: Use the built-in function $URem(s_i, 5)$ to model the remainder.

Subtask 2. [5 Points] add_next_state_constraint(...)

In this function we tell Z3 that the computer will compute s_{i+1} via 1:

(a) Enforce that s_i_plus_1 evaluates to the LCG computation (1) of the previous state.

Subtask 3. [3 Points] get_players_choice(...)

(a) Use the model that the solver came up with and winning_mapping to decide the your choice for the next round of the game.