The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

133 lines
3.0 KiB

from __future__ import annotations
import math
import numpy as np
def downsample(img, factor):
"""
Downsample an image along both dimensions by some factor
"""
assert img.shape[0] % factor == 0
assert img.shape[1] % factor == 0
img = img.reshape(
[img.shape[0] // factor, factor, img.shape[1] // factor, factor, 3]
)
img = img.mean(axis=3)
img = img.mean(axis=1)
return img
def fill_coords(img, fn, color):
"""
Fill pixels of an image with coordinates matching a filter function
"""
for y in range(img.shape[0]):
for x in range(img.shape[1]):
yf = (y + 0.5) / img.shape[0]
xf = (x + 0.5) / img.shape[1]
if fn(xf, yf):
img[y, x] = color
return img
def rotate_fn(fin, cx, cy, theta):
def fout(x, y):
x = x - cx
y = y - cy
x2 = cx + x * math.cos(-theta) - y * math.sin(-theta)
y2 = cy + y * math.cos(-theta) + x * math.sin(-theta)
return fin(x2, y2)
return fout
def point_in_line(x0, y0, x1, y1, r):
p0 = np.array([x0, y0], dtype=np.float32)
p1 = np.array([x1, y1], dtype=np.float32)
dir = p1 - p0
dist = np.linalg.norm(dir)
dir = dir / dist
xmin = min(x0, x1) - r
xmax = max(x0, x1) + r
ymin = min(y0, y1) - r
ymax = max(y0, y1) + r
def fn(x, y):
# Fast, early escape test
if x < xmin or x > xmax or y < ymin or y > ymax:
return False
q = np.array([x, y])
pq = q - p0
# Closest point on line
a = np.dot(pq, dir)
a = np.clip(a, 0, dist)
p = p0 + a * dir
dist_to_line = np.linalg.norm(q - p)
return dist_to_line <= r
return fn
def point_in_circle(cx, cy, r):
def fn(x, y):
return (x - cx) * (x - cx) + (y - cy) * (y - cy) <= r * r
return fn
def point_in_rect(xmin, xmax, ymin, ymax):
def fn(x, y):
return x >= xmin and x <= xmax and y >= ymin and y <= ymax
return fn
def point_in_triangle(a, b, c):
a = np.array(a, dtype=np.float32)
b = np.array(b, dtype=np.float32)
c = np.array(c, dtype=np.float32)
def fn(x, y):
v0 = c - a
v1 = b - a
v2 = np.array((x, y)) - a
# Compute dot products
dot00 = np.dot(v0, v0)
dot01 = np.dot(v0, v1)
dot02 = np.dot(v0, v2)
dot11 = np.dot(v1, v1)
dot12 = np.dot(v1, v2)
# Compute barycentric coordinates
inv_denom = 1 / (dot00 * dot11 - dot01 * dot01)
u = (dot11 * dot02 - dot01 * dot12) * inv_denom
v = (dot00 * dot12 - dot01 * dot02) * inv_denom
# Check if point is in triangle
return (u >= 0) and (v >= 0) and (u + v) < 1
return fn
def highlight_img(img, color=(255, 255, 255), alpha=0.30):
"""
Add highlighting to an image
"""
blend_img = img + alpha * (np.array(color, dtype=np.uint8) - img)
blend_img = blend_img.clip(0, 255).astype(np.uint8)
img[:, :, :] = blend_img