The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

259 lines
6.3 KiB

/* multiseed.c (multithreading demo) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
*
* Author: Heinrich Schuchardt <xypron.glpk@gmx.de>
*
* Copyright (C) 2017 Andrew Makhorin, Department for Applied
* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
* reserved. E-mail: <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
/*
* This program demonstrates running the GLPK library with multiple threads.
*
* When called the program requires two arguments:
*
* filename - the name of the MathProg model to be solved
* threads - the count of parallel threads to be run.
*
* Each thread is run with a different seed for the random number generator
* provided by the GLPK library.
*/
#include <glpk.h>
#include <malloc.h>
#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "thread.h"
#define BUFLEN 256
/* Task descriptor */
struct task {
pthread_t tid;
char *filename;
int seed;
size_t pos;
char buf[BUFLEN + 1];
int line;
jmp_buf jmp;
};
/* Mutex for console output */
pthread_mutex_t mutex;
/* Console output handler */
int term_hook(void *info, const char *text)
{
struct task *task = (struct task *) info;
size_t len = strlen(text);
/* Lock mutex so this is the only task creating console output. */
pthread_mutex_lock(&mutex);
/* Append the new text to the buffer. */
if (task->pos + len > BUFLEN) {
printf("%02d-%05d %s%s", task->seed, ++task->line, task->buf, text);
task->pos = 0;
task->buf[0] = 0;
} else {
strcpy(task->buf + task->pos, text);
task->pos += len;
}
/* If a complete line is available, send it to the console. */
if (strchr(task->buf, '\n')) {
printf("%02d-%05d %s", task->seed, ++task->line, task->buf);
task->pos = 0;
task->buf[0] = 0;
}
/* Unlock the mutex. */
pthread_mutex_unlock(&mutex);
/* Disable default output. */
return -1;
}
/* Error handler */
void error_hook(void *info)
{
struct task *task = (struct task *) info;
term_hook(task, "Error caught\n");
glp_free_env();
longjmp(task->jmp, 1);
}
void worker(void *arg)
{
struct task *task = (struct task *) arg;
int ret;
glp_prob *lp;
glp_tran *tran;
glp_iocp iocp;
if (setjmp(task->jmp)) {
/* If an error is caught leave the function. */
return;
}
/* Set the error handler. */
glp_error_hook(error_hook, task);
/* Set the console output handler. */
glp_term_hook(term_hook, arg);
glp_printf("Seed %02d\n", task->seed);
/* Create the problem object. */
lp = glp_create_prob();
if (!lp) {
glp_error("Out of memory\n");
}
/* Create the MathProg translator workspace. */
tran = glp_mpl_alloc_wksp();
if (!lp) {
glp_error("Out of memory\n");
}
/* Set the pseudo random number generator seed. */
glp_mpl_init_rand(tran, task->seed);
/* Read the model file. */
ret = glp_mpl_read_model (tran, task->filename, GLP_OFF);
if (ret != 0) {
glp_error("Model %s is not valid\n", task->filename);
}
/* Generate the model. */
ret = glp_mpl_generate(tran, NULL);
if (ret != 0) {
glp_error("Cannot generate model %s\n", task->filename);
}
/* Build the problem. */
glp_mpl_build_prob(tran, lp);
/* Solve the problem. */
glp_init_iocp(&iocp);
iocp.presolve = GLP_ON;
ret = glp_intopt(lp, &iocp);
if (ret == 0) {
/* Execute the post solve part of the model. */
glp_mpl_postsolve(tran, lp, GLP_MIP);
}
/* Release the memory. */
glp_mpl_free_wksp (tran);
glp_delete_prob(lp);
if (0 == task->seed % 3) {
glp_error("Voluntarily throwing an error in %s at line %d\n",
__FILE__, __LINE__);
}
glp_term_hook(NULL, NULL);
glp_error_hook(NULL, NULL);
glp_free_env();
}
#ifdef __WOE__
DWORD run(void *arg)
{
#else
void *run(void *arg)
{
#endif
worker(arg);
pthread_exit(NULL);
}
int main(int argc, char *argv[])
{
int i, n, rc;
struct task *tasks;
/* Make sure thread local memory is used by the GLPK library. */
if (!glp_config("TLS")) {
printf("The loaded GLPK library does not support thread local memory.\n"
"You need a version of the library configured with "
"--enable-reentrant=yes to run this program.\n");
exit(EXIT_FAILURE);
}
/* Check program arguments. */
if (argc != 3) {
printf("Usage %s filename threads\n"
" filename - MathProg model file\n"
" threads - number of threads\n",
argv[0]);
exit(EXIT_FAILURE);
}
/* Parse the arguments. */
n = atoi(argv[2]);
if (n > 50) {
printf("Number of threads is to high (> 50).\n");
exit(EXIT_FAILURE);
}
if (n <= 1) {
printf("Need positive number of threads\n");
exit(EXIT_FAILURE);
}
/* Allocate memory for the task descriptors. */
tasks = calloc(n, sizeof(struct task));
if (!tasks) {
printf("Out of memory");
exit(EXIT_FAILURE);
}
/* Create a mutex for console output. */
pthread_mutex_init(&mutex, NULL);
/* Create the threads. */
for (i = 0; i < n; ++i) {
tasks[i].filename = argv[1];
tasks[i].seed = i + 1;
tasks[i].pos = 0;
tasks[i].buf[0] = 0;
tasks[i].line = 0;
rc = pthread_create(&tasks[i].tid, NULL, run, &tasks[i]);
if (rc) {
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(EXIT_FAILURE);
}
}
/* Wait for all threads to complete. */
for (i = 0; i < n; ++i) {
pthread_join(tasks[i].tid, NULL);
}
/* Destroy the mutex. */
pthread_mutex_destroy(&mutex);
return EXIT_SUCCESS;
}