The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

2096 lines
56 KiB

/**
@file
@ingroup cudd
@brief Functions for group sifting.
@author Shipra Panda, Fabio Somenzi
@copyright@parblock
Copyright (c) 1995-2015, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
@endparblock
*/
#include "util.h"
#include "mtrInt.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/
/* Constant declarations */
/*---------------------------------------------------------------------------*/
/* Constants for lazy sifting */
#define DD_NORMAL_SIFT 0
#define DD_LAZY_SIFT 1
/* Constants for sifting up and down */
#define DD_SIFT_DOWN 0
#define DD_SIFT_UP 1
/*---------------------------------------------------------------------------*/
/* Stucture declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Type declarations */
/*---------------------------------------------------------------------------*/
typedef int (*DD_CHKFP)(DdManager *, int, int);
/*---------------------------------------------------------------------------*/
/* Variable declarations */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* Macro declarations */
/*---------------------------------------------------------------------------*/
/** \cond */
/*---------------------------------------------------------------------------*/
/* Static function prototypes */
/*---------------------------------------------------------------------------*/
static int ddTreeSiftingAux (DdManager *table, MtrNode *treenode, Cudd_ReorderingType method);
#ifdef DD_STATS
static int ddCountInternalMtrNodes (DdManager *table, MtrNode *treenode);
#endif
static int ddReorderChildren (DdManager *table, MtrNode *treenode, Cudd_ReorderingType method);
static void ddFindNodeHiLo (DdManager *table, MtrNode *treenode, int *lower, int *upper);
static int ddUniqueCompareGroup (void const *ptrX, void const *ptrY);
static int ddGroupSifting (DdManager *table, int lower, int upper, DD_CHKFP checkFunction, int lazyFlag);
static void ddCreateGroup (DdManager *table, int x, int y);
static int ddGroupSiftingAux (DdManager *table, int x, int xLow, int xHigh, DD_CHKFP checkFunction, int lazyFlag);
static int ddGroupSiftingUp (DdManager *table, int y, int xLow, DD_CHKFP checkFunction, Move **moves);
static int ddGroupSiftingDown (DdManager *table, int x, int xHigh, DD_CHKFP checkFunction, Move **moves);
static int ddGroupMove (DdManager *table, int x, int y, Move **moves);
static int ddGroupMoveBackward (DdManager *table, int x, int y);
static int ddGroupSiftingBackward (DdManager *table, Move *moves, int size, int upFlag, int lazyFlag);
static void ddMergeGroups (DdManager *table, MtrNode *treenode, int low, int high);
static void ddDissolveGroup (DdManager *table, int x, int y);
static int ddNoCheck (DdManager *table, int x, int y);
static int ddSecDiffCheck (DdManager *table, int x, int y);
static int ddExtSymmCheck (DdManager *table, int x, int y);
static int ddVarGroupCheck (DdManager * table, int x, int y);
static int ddSetVarHandled (DdManager *dd, int index);
static int ddResetVarHandled (DdManager *dd, int index);
static int ddIsVarHandled (DdManager *dd, int index);
/** \endcond */
/*---------------------------------------------------------------------------*/
/* Definition of exported functions */
/*---------------------------------------------------------------------------*/
/**
@brief Creates a new variable group.
@details The group starts at variable low and contains size
variables. The parameter low is the index of the first variable. If
the variable already exists, its current position in the order is
known to the manager. If the variable does not exist yet, the
position is assumed to be the same as the index. The group tree is
created if it does not exist yet.
@return a pointer to the group if successful; NULL otherwise.
@sideeffect The variable tree is changed.
@see Cudd_MakeZddTreeNode
*/
MtrNode *
Cudd_MakeTreeNode(
DdManager * dd /**< manager */,
unsigned int low /**< index of the first group variable */,
unsigned int size /**< number of variables in the group */,
unsigned int type /**< MTR_DEFAULT or MTR_FIXED */)
{
MtrNode *group;
MtrNode *tree;
unsigned int level;
/* If the variable does not exist yet, the position is assumed to be
** the same as the index. Therefore, applications that rely on
** Cudd_bddNewVarAtLevel or Cudd_addNewVarAtLevel to create new
** variables have to create the variables before they group them.
*/
level = (low < (unsigned int) dd->size) ? (unsigned int) dd->perm[low] : low;
if (level + size - 1> (int) MTR_MAXHIGH)
return(NULL);
/* If the tree does not exist yet, create it. */
tree = dd->tree;
if (tree == NULL) {
dd->tree = tree = Mtr_InitGroupTree(0, dd->size);
if (tree == NULL)
return(NULL);
tree->index = dd->size == 0 ? 0 : dd->invperm[0];
}
/* Extend the upper bound of the tree if necessary. This allows the
** application to create groups even before the variables are created.
*/
tree->size = ddMax(tree->size, ddMax(level + size, (unsigned) dd->size));
/* Create the group. */
group = Mtr_MakeGroup(tree, level, size, type);
if (group == NULL)
return(NULL);
/* Initialize the index field to the index of the variable currently
** in position low. This field will be updated by the reordering
** procedure to provide a handle to the group once it has been moved.
*/
group->index = (MtrHalfWord) low;
return(group);
} /* end of Cudd_MakeTreeNode */
/*---------------------------------------------------------------------------*/
/* Definition of internal functions */
/*---------------------------------------------------------------------------*/
/**
@brief Tree sifting algorithm.
@details Assumes that a tree representing a group hierarchy is
passed as a parameter. It then reorders each group in postorder
fashion by calling ddTreeSiftingAux. Assumes that no dead nodes are
present.
@return 1 if successful; 0 otherwise.
@sideeffect None
*/
int
cuddTreeSifting(
DdManager * table /**< %DD table */,
Cudd_ReorderingType method /**< reordering method for the groups of leaves */)
{
int i;
int nvars;
int result;
int tempTree;
/* If no tree is provided we create a temporary one in which all
** variables are in a single group. After reordering this tree is
** destroyed.
*/
tempTree = table->tree == NULL;
if (tempTree) {
table->tree = Mtr_InitGroupTree(0,table->size);
table->tree->index = table->invperm[0];
}
nvars = table->size;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0 && !tempTree)
(void) fprintf(table->out,"cuddTreeSifting:");
Mtr_PrintGroups(table->tree,table->enableExtraDebug <= 0);
#endif
#ifdef DD_STATS
table->extsymmcalls = 0;
table->extsymm = 0;
table->secdiffcalls = 0;
table->secdiff = 0;
table->secdiffmisfire = 0;
(void) fprintf(table->out,"\n");
if (!tempTree)
(void) fprintf(table->out,"#:IM_NODES %8d: group tree nodes\n",
ddCountInternalMtrNodes(table,table->tree));
#endif
/* Initialize the group of each subtable to itself. Initially
** there are no groups. Groups are created according to the tree
** structure in postorder fashion.
*/
for (i = 0; i < nvars; i++)
table->subtables[i].next = i;
/* Reorder. */
result = ddTreeSiftingAux(table, table->tree, method);
#ifdef DD_STATS /* print stats */
if (!tempTree && method == CUDD_REORDER_GROUP_SIFT &&
(table->groupcheck == CUDD_GROUP_CHECK7 ||
table->groupcheck == CUDD_GROUP_CHECK5)) {
(void) fprintf(table->out,"\nextsymmcalls = %d\n",table->extsymmcalls);
(void) fprintf(table->out,"extsymm = %d",table->extsymm);
}
if (!tempTree && method == CUDD_REORDER_GROUP_SIFT &&
table->groupcheck == CUDD_GROUP_CHECK7) {
(void) fprintf(table->out,"\nsecdiffcalls = %d\n",table->secdiffcalls);
(void) fprintf(table->out,"secdiff = %d\n",table->secdiff);
(void) fprintf(table->out,"secdiffmisfire = %d",table->secdiffmisfire);
}
#endif
if (tempTree)
Cudd_FreeTree(table);
else
Mtr_ReorderGroups(table->tree, table->perm);
return(result);
} /* end of cuddTreeSifting */
/*---------------------------------------------------------------------------*/
/* Definition of static functions */
/*---------------------------------------------------------------------------*/
/**
@brief Visits the group tree and reorders each group.
@details Recursively visits the group tree and reorders each
group in postorder fashion.
@return 1 if successful; 0 otherwise.
@sideeffect None
*/
static int
ddTreeSiftingAux(
DdManager * table,
MtrNode * treenode,
Cudd_ReorderingType method)
{
MtrNode *auxnode;
int res;
Cudd_AggregationType saveCheck;
#ifdef DD_DEBUG
Mtr_PrintGroups(treenode,1);
#endif
auxnode = treenode;
while (auxnode != NULL) {
if (auxnode->child != NULL) {
if (!ddTreeSiftingAux(table, auxnode->child, method))
return(0);
saveCheck = table->groupcheck;
table->groupcheck = CUDD_NO_CHECK;
if (method != CUDD_REORDER_LAZY_SIFT)
res = ddReorderChildren(table, auxnode, CUDD_REORDER_GROUP_SIFT);
else
res = ddReorderChildren(table, auxnode, CUDD_REORDER_LAZY_SIFT);
table->groupcheck = saveCheck;
if (res == 0)
return(0);
} else if (auxnode->size > 1) {
if (!ddReorderChildren(table, auxnode, method))
return(0);
}
auxnode = auxnode->younger;
}
return(1);
} /* end of ddTreeSiftingAux */
#ifdef DD_STATS
/**
@brief Counts the number of internal nodes of the group tree.
@return the count.
@sideeffect None
*/
static int
ddCountInternalMtrNodes(
DdManager * table,
MtrNode * treenode)
{
MtrNode *auxnode;
int count,nodeCount;
nodeCount = 0;
auxnode = treenode;
while (auxnode != NULL) {
if (!(MTR_TEST(auxnode,MTR_TERMINAL))) {
nodeCount++;
count = ddCountInternalMtrNodes(table,auxnode->child);
nodeCount += count;
}
auxnode = auxnode->younger;
}
return(nodeCount);
} /* end of ddCountInternalMtrNodes */
#endif
/**
@brief Reorders the children of a group tree node according to
the options.
@details After reordering puts all the variables in the group and/or
its descendents in a single group. This allows hierarchical
reordering. If the variables in the group do not exist yet, simply
does nothing.
@return 1 if successful; 0 otherwise.
@sideeffect None
*/
static int
ddReorderChildren(
DdManager * table,
MtrNode * treenode,
Cudd_ReorderingType method)
{
int lower;
int upper = 0;
int result;
unsigned int initialSize;
ddFindNodeHiLo(table,treenode,&lower,&upper);
/* If upper == -1 these variables do not exist yet. */
if (upper == -1)
return(1);
if (treenode->flags == MTR_FIXED) {
result = 1;
} else {
#ifdef DD_STATS
(void) fprintf(table->out," ");
#endif
switch (method) {
case CUDD_REORDER_RANDOM:
case CUDD_REORDER_RANDOM_PIVOT:
result = cuddSwapping(table,lower,upper,method);
break;
case CUDD_REORDER_SIFT:
result = cuddSifting(table,lower,upper);
break;
case CUDD_REORDER_SIFT_CONVERGE:
do {
initialSize = table->keys - table->isolated;
result = cuddSifting(table,lower,upper);
if (initialSize <= table->keys - table->isolated)
break;
#ifdef DD_STATS
else
(void) fprintf(table->out,"\n");
#endif
} while (result != 0);
break;
case CUDD_REORDER_SYMM_SIFT:
result = cuddSymmSifting(table,lower,upper);
break;
case CUDD_REORDER_SYMM_SIFT_CONV:
result = cuddSymmSiftingConv(table,lower,upper);
break;
case CUDD_REORDER_GROUP_SIFT:
if (table->groupcheck == CUDD_NO_CHECK) {
result = ddGroupSifting(table,lower,upper,ddNoCheck,
DD_NORMAL_SIFT);
} else if (table->groupcheck == CUDD_GROUP_CHECK5) {
result = ddGroupSifting(table,lower,upper,ddExtSymmCheck,
DD_NORMAL_SIFT);
} else if (table->groupcheck == CUDD_GROUP_CHECK7) {
result = ddGroupSifting(table,lower,upper,ddExtSymmCheck,
DD_NORMAL_SIFT);
} else {
(void) fprintf(table->err,
"Unknown group ckecking method\n");
result = 0;
}
break;
case CUDD_REORDER_GROUP_SIFT_CONV:
do {
initialSize = table->keys - table->isolated;
if (table->groupcheck == CUDD_NO_CHECK) {
(void) ddGroupSifting(table,lower,upper,ddNoCheck,
DD_NORMAL_SIFT);
} else if (table->groupcheck == CUDD_GROUP_CHECK5) {
(void) ddGroupSifting(table,lower,upper,ddExtSymmCheck,
DD_NORMAL_SIFT);
} else if (table->groupcheck == CUDD_GROUP_CHECK7) {
(void) ddGroupSifting(table,lower,upper,ddExtSymmCheck,
DD_NORMAL_SIFT);
} else {
(void) fprintf(table->err,
"Unknown group ckecking method\n");
}
#ifdef DD_STATS
(void) fprintf(table->out,"\n");
#endif
result = cuddWindowReorder(table,lower,upper,
CUDD_REORDER_WINDOW4);
if (initialSize <= table->keys - table->isolated)
break;
#ifdef DD_STATS
else
(void) fprintf(table->out,"\n");
#endif
} while (result != 0);
break;
case CUDD_REORDER_WINDOW2:
case CUDD_REORDER_WINDOW3:
case CUDD_REORDER_WINDOW4:
case CUDD_REORDER_WINDOW2_CONV:
case CUDD_REORDER_WINDOW3_CONV:
case CUDD_REORDER_WINDOW4_CONV:
result = cuddWindowReorder(table,lower,upper,method);
break;
case CUDD_REORDER_ANNEALING:
result = cuddAnnealing(table,lower,upper);
break;
case CUDD_REORDER_GENETIC:
result = cuddGa(table,lower,upper);
break;
case CUDD_REORDER_LINEAR:
result = cuddLinearAndSifting(table,lower,upper);
break;
case CUDD_REORDER_LINEAR_CONVERGE:
do {
initialSize = table->keys - table->isolated;
result = cuddLinearAndSifting(table,lower,upper);
if (initialSize <= table->keys - table->isolated)
break;
#ifdef DD_STATS
else
(void) fprintf(table->out,"\n");
#endif
} while (result != 0);
break;
case CUDD_REORDER_EXACT:
result = cuddExact(table,lower,upper);
break;
case CUDD_REORDER_LAZY_SIFT:
result = ddGroupSifting(table,lower,upper,ddVarGroupCheck,
DD_LAZY_SIFT);
break;
default:
return(0);
}
}
/* Create a single group for all the variables that were sifted,
** so that they will be treated as a single block by successive
** invocations of ddGroupSifting.
*/
ddMergeGroups(table,treenode,lower,upper);
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,"ddReorderChildren:");
#endif
return(result);
} /* end of ddReorderChildren */
/**
@brief Finds the lower and upper bounds of the group represented
by treenode.
@details From the index and size fields we need to derive the
current positions, and find maximum and minimum.
@sideeffect The bounds are returned as side effects.
*/
static void
ddFindNodeHiLo(
DdManager * table,
MtrNode * treenode,
int * lower,
int * upper)
{
int low;
int high;
/* Check whether no variables in this group already exist.
** If so, return immediately. The calling procedure will know from
** the values of upper that no reordering is needed.
*/
if ((int) treenode->low >= table->size) {
*lower = table->size;
*upper = -1;
return;
}
*lower = low = (unsigned int) table->perm[treenode->index];
high = (int) (low + treenode->size - 1);
if (high >= table->size) {
/* This is the case of a partially existing group. The aim is to
** reorder as many variables as safely possible. If the tree
** node is terminal, we just reorder the subset of the group
** that is currently in existence. If the group has
** subgroups, then we only reorder those subgroups that are
** fully instantiated. This way we avoid breaking up a group.
*/
MtrNode *auxnode = treenode->child;
if (auxnode == NULL) {
*upper = (unsigned int) table->size - 1;
} else {
/* Search the subgroup that strands the table->size line.
** If the first group starts at 0 and goes past table->size
** upper will get -1, thus correctly signaling that no reordering
** should take place.
*/
while (auxnode != NULL) {
int thisLower = table->perm[auxnode->low];
int thisUpper = thisLower + auxnode->size - 1;
if (thisUpper >= table->size && thisLower < table->size)
*upper = (unsigned int) thisLower - 1;
auxnode = auxnode->younger;
}
}
} else {
/* Normal case: All the variables of the group exist. */
*upper = (unsigned int) high;
}
#ifdef DD_DEBUG
/* Make sure that all variables in group are contiguous. */
assert(treenode->size >= (MtrHalfWord) (*upper - *lower + 1));
#endif
return;
} /* end of ddFindNodeHiLo */
/**
@brief Comparison function used by qsort.
@details Comparison function used by qsort to order the variables
according to the number of keys in the subtables.
@return the difference in number of keys between the two variables
being compared.
@sideeffect None
*/
static int
ddUniqueCompareGroup(
void const * ptrX,
void const * ptrY)
{
IndexKey const * pX = (IndexKey const *) ptrX;
IndexKey const * pY = (IndexKey const *) ptrY;
#if 0
if (pY->keys == pX->keys) {
return(pX->index - pY->index);
}
#endif
return(pY->keys - pX->keys);
} /* end of ddUniqueCompareGroup */
/**
@brief Sifts from treenode->low to treenode->high.
@details If croupcheck == CUDD_GROUP_CHECK7, it checks for group
creation at the end of the initial sifting. If a group is created,
it is then sifted again. After sifting one variable, the group that
contains it is dissolved.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/
static int
ddGroupSifting(
DdManager * table,
int lower,
int upper,
DD_CHKFP checkFunction,
int lazyFlag)
{
IndexKey *var;
int i,j,x,xInit;
int nvars;
int classes;
int result;
int *sifted;
int merged;
int dissolve;
#ifdef DD_STATS
unsigned previousSize;
#endif
int xindex;
nvars = table->size;
/* Order variables to sift. */
sifted = NULL;
var = ALLOC(IndexKey,nvars);
if (var == NULL) {
table->errorCode = CUDD_MEMORY_OUT;
goto ddGroupSiftingOutOfMem;
}
sifted = ALLOC(int,nvars);
if (sifted == NULL) {
table->errorCode = CUDD_MEMORY_OUT;
goto ddGroupSiftingOutOfMem;
}
/* Here we consider only one representative for each group. */
for (i = 0, classes = 0; i < nvars; i++) {
sifted[i] = 0;
x = table->perm[i];
if ((unsigned) x >= table->subtables[x].next) {
var[classes].index = i;
var[classes].keys = table->subtables[x].keys;
classes++;
}
}
util_qsort(var, classes, sizeof(IndexKey), ddUniqueCompareGroup);
if (lazyFlag) {
for (i = 0; i < nvars; i ++) {
ddResetVarHandled(table, i);
}
}
/* Now sift. */
for (i = 0; i < ddMin(table->siftMaxVar,classes); i++) {
if (table->ddTotalNumberSwapping >= table->siftMaxSwap)
break;
if (util_cpu_time() - table->startTime + table->reordTime
> table->timeLimit) {
table->autoDyn = 0; /* prevent further reordering */
break;
}
if (table->terminationCallback != NULL &&
table->terminationCallback(table->tcbArg)) {
table->autoDyn = 0; /* prevent further reordering */
break;
}
xindex = var[i].index;
if (sifted[xindex] == 1) /* variable already sifted as part of group */
continue;
x = table->perm[xindex]; /* find current level of this variable */
if (x < lower || x > upper || table->subtables[x].bindVar == 1)
continue;
#ifdef DD_STATS
previousSize = table->keys - table->isolated;
#endif
#ifdef DD_DEBUG
/* x is bottom of group */
assert((unsigned) x >= table->subtables[x].next);
#endif
if ((unsigned) x == table->subtables[x].next) {
dissolve = 1;
result = ddGroupSiftingAux(table,x,lower,upper,checkFunction,
lazyFlag);
} else {
dissolve = 0;
result = ddGroupSiftingAux(table,x,lower,upper,ddNoCheck,lazyFlag);
}
if (!result) goto ddGroupSiftingOutOfMem;
/* check for aggregation */
merged = 0;
if (lazyFlag == 0 && table->groupcheck == CUDD_GROUP_CHECK7) {
x = table->perm[xindex]; /* find current level */
if ((unsigned) x == table->subtables[x].next) { /* not part of a group */
if (x != upper && sifted[table->invperm[x+1]] == 0 &&
(unsigned) x+1 == table->subtables[x+1].next) {
if (ddSecDiffCheck(table,x,x+1)) {
merged =1;
ddCreateGroup(table,x,x+1);
}
}
if (x != lower && sifted[table->invperm[x-1]] == 0 &&
(unsigned) x-1 == table->subtables[x-1].next) {
if (ddSecDiffCheck(table,x-1,x)) {
merged =1;
ddCreateGroup(table,x-1,x);
}
}
}
}
if (merged) { /* a group was created */
/* move x to bottom of group */
while ((unsigned) x < table->subtables[x].next)
x = table->subtables[x].next;
/* sift */
result = ddGroupSiftingAux(table,x,lower,upper,ddNoCheck,lazyFlag);
if (!result) goto ddGroupSiftingOutOfMem;
#ifdef DD_STATS
if (table->keys < previousSize + table->isolated) {
(void) fprintf(table->out,"_");
} else if (table->keys > previousSize + table->isolated) {
(void) fprintf(table->out,"^");
} else {
(void) fprintf(table->out,"*");
}
fflush(table->out);
} else {
if (table->keys < previousSize + table->isolated) {
(void) fprintf(table->out,"-");
} else if (table->keys > previousSize + table->isolated) {
(void) fprintf(table->out,"+");
} else {
(void) fprintf(table->out,"=");
}
fflush(table->out);
#endif
}
/* Mark variables in the group just sifted. */
x = table->perm[xindex];
if ((unsigned) x != table->subtables[x].next) {
xInit = x;
do {
j = table->invperm[x];
sifted[j] = 1;
x = table->subtables[x].next;
} while (x != xInit);
/* Dissolve the group if it was created. */
if (lazyFlag == 0 && dissolve) {
do {
j = table->subtables[x].next;
table->subtables[x].next = x;
x = j;
} while (x != xInit);
}
}
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,"ddGroupSifting:");
#endif
if (lazyFlag) ddSetVarHandled(table, xindex);
} /* for */
FREE(sifted);
FREE(var);
return(1);
ddGroupSiftingOutOfMem:
if (var != NULL) FREE(var);
if (sifted != NULL) FREE(sifted);
return(0);
} /* end of ddGroupSifting */
/**
@brief Creates a group encompassing variables from x to y in the
%DD table.
@details In the current implementation it must be y == x+1.
@sideeffect None
*/
static void
ddCreateGroup(
DdManager * table,
int x,
int y)
{
int gybot;
#ifdef DD_DEBUG
assert(y == x+1);
#endif
/* Find bottom of second group. */
gybot = y;
while ((unsigned) gybot < table->subtables[gybot].next)
gybot = table->subtables[gybot].next;
/* Link groups. */
table->subtables[x].next = y;
table->subtables[gybot].next = x;
return;
} /* ddCreateGroup */
/**
@brief Sifts one variable up and down until it has taken all
positions. Checks for aggregation.
@details There may be at most two sweeps, even if the group grows.
Assumes that x is either an isolated variable, or it is the bottom
of a group. All groups may not have been found. The variable being
moved is returned to the best position seen during sifting.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/
static int
ddGroupSiftingAux(
DdManager * table,
int x,
int xLow,
int xHigh,
DD_CHKFP checkFunction,
int lazyFlag)
{
Move *move;
Move *moves; /* list of moves */
int initialSize;
int result;
int y;
int topbot;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,
"ddGroupSiftingAux from %d to %d\n",xLow,xHigh);
assert((unsigned) x >= table->subtables[x].next); /* x is bottom of group */
#endif
table->originalSize = (table->keys - table->isolated);
initialSize = (int) table->originalSize;
moves = NULL;
/* If we have a singleton, we check for aggregation in both
** directions before we sift.
*/
if ((unsigned) x == table->subtables[x].next) {
/* Will go down first, unless x == xHigh:
** Look for aggregation above x.
*/
for (y = x; y > xLow; y--) {
if (!checkFunction(table,y-1,y))
break;
topbot = table->subtables[y-1].next; /* find top of y-1's group */
table->subtables[y-1].next = y;
table->subtables[x].next = topbot; /* x is bottom of group so its */
/* next is top of y-1's group */
y = topbot + 1; /* add 1 for y--; new y is top of group */
}
/* Will go up first unless x == xlow:
** Look for aggregation below x.
*/
for (y = x; y < xHigh; y++) {
if (!checkFunction(table,y,y+1))
break;
/* find bottom of y+1's group */
topbot = y + 1;
while ((unsigned) topbot < table->subtables[topbot].next) {
topbot = table->subtables[topbot].next;
}
table->subtables[topbot].next = table->subtables[y].next;
table->subtables[y].next = y + 1;
y = topbot - 1; /* subtract 1 for y++; new y is bottom of group */
}
}
/* Now x may be in the middle of a group.
** Find bottom of x's group.
*/
while ((unsigned) x < table->subtables[x].next)
x = table->subtables[x].next;
if (x == xLow) { /* Sift down */
#ifdef DD_DEBUG
/* x must be a singleton */
assert((unsigned) x == table->subtables[x].next);
#endif
if (x == xHigh) return(1); /* just one variable */
if (!ddGroupSiftingDown(table,x,xHigh,checkFunction,&moves))
goto ddGroupSiftingAuxOutOfMem;
/* at this point x == xHigh, unless early term */
/* move backward and stop at best position */
result = ddGroupSiftingBackward(table,moves,initialSize,
DD_SIFT_DOWN,lazyFlag);
#ifdef DD_DEBUG
assert(table->keys - table->isolated <= (unsigned) initialSize);
#endif
if (!result) goto ddGroupSiftingAuxOutOfMem;
} else if (cuddNextHigh(table,x) > xHigh) { /* Sift up */
#ifdef DD_DEBUG
/* x is bottom of group */
assert((unsigned) x >= table->subtables[x].next);
#endif
/* Find top of x's group */
x = table->subtables[x].next;
if (!ddGroupSiftingUp(table,x,xLow,checkFunction,&moves))
goto ddGroupSiftingAuxOutOfMem;
/* at this point x == xLow, unless early term */
/* move backward and stop at best position */
result = ddGroupSiftingBackward(table,moves,initialSize,
DD_SIFT_UP,lazyFlag);
#ifdef DD_DEBUG
assert(table->keys - table->isolated <= (unsigned) initialSize);
#endif
if (!result) goto ddGroupSiftingAuxOutOfMem;
} else if (x - xLow > xHigh - x) { /* must go down first: shorter */
if (!ddGroupSiftingDown(table,x,xHigh,checkFunction,&moves))
goto ddGroupSiftingAuxOutOfMem;
/* at this point x == xHigh, unless early term */
/* Find top of group */
if (moves) {
x = moves->y;
}
while ((unsigned) x < table->subtables[x].next)
x = table->subtables[x].next;
x = table->subtables[x].next;
#ifdef DD_DEBUG
/* x should be the top of a group */
assert((unsigned) x <= table->subtables[x].next);
#endif
if (!ddGroupSiftingUp(table,x,xLow,checkFunction,&moves))
goto ddGroupSiftingAuxOutOfMem;
/* move backward and stop at best position */
result = ddGroupSiftingBackward(table,moves,initialSize,
DD_SIFT_UP,lazyFlag);
#ifdef DD_DEBUG
assert(table->keys - table->isolated <= (unsigned) initialSize);
#endif
if (!result) goto ddGroupSiftingAuxOutOfMem;
} else { /* moving up first: shorter */
/* Find top of x's group */
x = table->subtables[x].next;
if (!ddGroupSiftingUp(table,x,xLow,checkFunction,&moves))
goto ddGroupSiftingAuxOutOfMem;
/* at this point x == xHigh, unless early term */
if (moves) {
x = moves->x;
}
while ((unsigned) x < table->subtables[x].next)
x = table->subtables[x].next;
#ifdef DD_DEBUG
/* x is bottom of a group */
assert((unsigned) x >= table->subtables[x].next);
#endif
if (!ddGroupSiftingDown(table,x,xHigh,checkFunction,&moves))
goto ddGroupSiftingAuxOutOfMem;
/* move backward and stop at best position */
result = ddGroupSiftingBackward(table,moves,initialSize,
DD_SIFT_DOWN,lazyFlag);
#ifdef DD_DEBUG
assert(table->keys - table->isolated <= (unsigned) initialSize);
#endif
if (!result) goto ddGroupSiftingAuxOutOfMem;
}
while (moves != NULL) {
move = moves->next;
cuddDeallocMove(table, moves);
moves = move;
}
return(1);
ddGroupSiftingAuxOutOfMem:
while (moves != NULL) {
move = moves->next;
cuddDeallocMove(table, moves);
moves = move;
}
return(0);
} /* end of ddGroupSiftingAux */
/**
@brief Sifts up a variable until either it reaches position xLow
or the size of the %DD heap increases too much.
@details Assumes that y is the top of a group (or a singleton).
Checks y for aggregation to the adjacent variables. Records all the
moves that are appended to the list of moves received as input and
returned as a side effect.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/
static int
ddGroupSiftingUp(
DdManager * table,
int y,
int xLow,
DD_CHKFP checkFunction,
Move ** moves)
{
Move *move;
int x;
int size;
int i;
int gxtop,gybot;
int limitSize;
int xindex, yindex;
int zindex;
int z;
unsigned int isolated;
int L; /* lower bound on DD size */
#ifdef DD_DEBUG
int checkL;
#endif
yindex = table->invperm[y];
/* Initialize the lower bound.
** The part of the DD below the bottom of y's group will not change.
** The part of the DD above y that does not interact with any
** variable of y's group will not change.
** The rest may vanish in the best case, except for
** the nodes at level xLow, which will not vanish, regardless.
** What we use here is not really a lower bound, because we ignore
** the interactions with all variables except y.
*/
limitSize = L = (int) (table->keys - table->isolated);
gybot = y;
while ((unsigned) gybot < table->subtables[gybot].next)
gybot = table->subtables[gybot].next;
for (z = xLow + 1; z <= gybot; z++) {
zindex = table->invperm[z];
if (zindex == yindex || cuddTestInteract(table,zindex,yindex)) {
isolated = table->vars[zindex]->ref == 1;
L -= table->subtables[z].keys - isolated;
}
}
x = cuddNextLow(table,y);
while (x >= xLow && L <= limitSize) {
#ifdef DD_DEBUG
gybot = y;
while ((unsigned) gybot < table->subtables[gybot].next)
gybot = table->subtables[gybot].next;
checkL = table->keys - table->isolated;
for (z = xLow + 1; z <= gybot; z++) {
zindex = table->invperm[z];
if (zindex == yindex || cuddTestInteract(table,zindex,yindex)) {
isolated = table->vars[zindex]->ref == 1;
checkL -= table->subtables[z].keys - isolated;
}
}
if (table->enableExtraDebug > 0 && L != checkL) {
(void) fprintf(table->out,
"Inaccurate lower bound: L = %d checkL = %d\n",
L, checkL);
}
#endif
gxtop = table->subtables[x].next;
if (checkFunction(table,x,y)) {
/* Group found, attach groups */
table->subtables[x].next = y;
i = table->subtables[y].next;
while (table->subtables[i].next != (unsigned) y)
i = table->subtables[i].next;
table->subtables[i].next = gxtop;
move = (Move *)cuddDynamicAllocNode(table);
if (move == NULL) goto ddGroupSiftingUpOutOfMem;
move->x = x;
move->y = y;
move->flags = MTR_NEWNODE;
move->size = (int) (table->keys - table->isolated);
move->next = *moves;
*moves = move;
} else if (table->subtables[x].next == (unsigned) x &&
table->subtables[y].next == (unsigned) y) {
/* x and y are self groups */
xindex = table->invperm[x];
size = cuddSwapInPlace(table,x,y);
#ifdef DD_DEBUG
assert(table->subtables[x].next == (unsigned) x);
assert(table->subtables[y].next == (unsigned) y);
#endif
if (size == 0) goto ddGroupSiftingUpOutOfMem;
/* Update the lower bound. */
if (cuddTestInteract(table,xindex,yindex)) {
isolated = table->vars[xindex]->ref == 1;
L += table->subtables[y].keys - isolated;
}
move = (Move *)cuddDynamicAllocNode(table);
if (move == NULL) goto ddGroupSiftingUpOutOfMem;
move->x = x;
move->y = y;
move->flags = MTR_DEFAULT;
move->size = size;
move->next = *moves;
*moves = move;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,
"ddGroupSiftingUp (2 single groups):\n");
#endif
if ((double) size > (double) limitSize * table->maxGrowth)
return(1);
if (size < limitSize) limitSize = size;
} else { /* Group move */
size = ddGroupMove(table,x,y,moves);
if (size == 0) goto ddGroupSiftingUpOutOfMem;
/* Update the lower bound. */
z = (*moves)->y;
do {
zindex = table->invperm[z];
if (cuddTestInteract(table,zindex,yindex)) {
isolated = table->vars[zindex]->ref == 1;
L += table->subtables[z].keys - isolated;
}
z = table->subtables[z].next;
} while (z != (int) (*moves)->y);
if ((double) size > (double) limitSize * table->maxGrowth)
return(1);
if (size < limitSize) limitSize = size;
}
y = gxtop;
x = cuddNextLow(table,y);
}
return(1);
ddGroupSiftingUpOutOfMem:
while (*moves != NULL) {
move = (*moves)->next;
cuddDeallocMove(table, *moves);
*moves = move;
}
return(0);
} /* end of ddGroupSiftingUp */
/**
@brief Sifts down a variable until it reaches position xHigh.
@details Assumes that x is the bottom of a group (or a singleton).
Records all the moves.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/
static int
ddGroupSiftingDown(
DdManager * table,
int x,
int xHigh,
DD_CHKFP checkFunction,
Move ** moves)
{
Move *move;
int y;
int size;
int limitSize;
int gxtop,gybot;
int R; /* upper bound on node decrease */
int xindex, yindex;
unsigned isolated;
int allVars;
int z;
int zindex;
#ifdef DD_DEBUG
int checkR;
#endif
/* If the group consists of simple variables, there is no point in
** sifting it down. This check is redundant if the projection functions
** do not have external references, because the computation of the
** lower bound takes care of the problem. It is necessary otherwise to
** prevent the sifting down of simple variables. */
y = x;
allVars = 1;
do {
if (table->subtables[y].keys != 1) {
allVars = 0;
break;
}
y = table->subtables[y].next;
} while (table->subtables[y].next != (unsigned) x);
if (allVars)
return(1);
/* Initialize R. */
xindex = table->invperm[x];
gxtop = table->subtables[x].next;
limitSize = size = (int) (table->keys - table->isolated);
R = 0;
for (z = xHigh; z > gxtop; z--) {
zindex = table->invperm[z];
if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) {
isolated = table->vars[zindex]->ref == 1;
R += table->subtables[z].keys - isolated;
}
}
y = cuddNextHigh(table,x);
while (y <= xHigh && size - R < limitSize) {
#ifdef DD_DEBUG
gxtop = table->subtables[x].next;
checkR = 0;
for (z = xHigh; z > gxtop; z--) {
zindex = table->invperm[z];
if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) {
isolated = table->vars[zindex]->ref == 1;
checkR += table->subtables[z].keys - isolated;
}
}
assert(R >= checkR);
#endif
/* Find bottom of y group. */
gybot = table->subtables[y].next;
while (table->subtables[gybot].next != (unsigned) y)
gybot = table->subtables[gybot].next;
if (checkFunction(table,x,y)) {
/* Group found: attach groups and record move. */
gxtop = table->subtables[x].next;
table->subtables[x].next = y;
table->subtables[gybot].next = gxtop;
move = (Move *)cuddDynamicAllocNode(table);
if (move == NULL) goto ddGroupSiftingDownOutOfMem;
move->x = x;
move->y = y;
move->flags = MTR_NEWNODE;
move->size = (int) (table->keys - table->isolated);
move->next = *moves;
*moves = move;
} else if (table->subtables[x].next == (unsigned) x &&
table->subtables[y].next == (unsigned) y) {
/* x and y are self groups */
/* Update upper bound on node decrease. */
yindex = table->invperm[y];
if (cuddTestInteract(table,xindex,yindex)) {
isolated = table->vars[yindex]->ref == 1;
R -= table->subtables[y].keys - isolated;
}
size = cuddSwapInPlace(table,x,y);
#ifdef DD_DEBUG
assert(table->subtables[x].next == (unsigned) x);
assert(table->subtables[y].next == (unsigned) y);
#endif
if (size == 0) goto ddGroupSiftingDownOutOfMem;
/* Record move. */
move = (Move *) cuddDynamicAllocNode(table);
if (move == NULL) goto ddGroupSiftingDownOutOfMem;
move->x = x;
move->y = y;
move->flags = MTR_DEFAULT;
move->size = size;
move->next = *moves;
*moves = move;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,
"ddGroupSiftingDown (2 single groups):\n");
#endif
if ((double) size > (double) limitSize * table->maxGrowth)
return(1);
if (size < limitSize) limitSize = size;
} else { /* Group move */
/* Update upper bound on node decrease: first phase. */
gxtop = table->subtables[x].next;
z = gxtop + 1;
do {
zindex = table->invperm[z];
if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) {
isolated = table->vars[zindex]->ref == 1;
R -= table->subtables[z].keys - isolated;
}
z++;
} while (z <= gybot);
size = ddGroupMove(table,x,y,moves);
if (size == 0) goto ddGroupSiftingDownOutOfMem;
if ((double) size > (double) limitSize * table->maxGrowth)
return(1);
if (size < limitSize) limitSize = size;
/* Update upper bound on node decrease: second phase. */
gxtop = table->subtables[gybot].next;
for (z = gxtop + 1; z <= gybot; z++) {
zindex = table->invperm[z];
if (zindex == xindex || cuddTestInteract(table,xindex,zindex)) {
isolated = table->vars[zindex]->ref == 1;
R += table->subtables[z].keys - isolated;
}
}
}
x = gybot;
y = cuddNextHigh(table,x);
}
return(1);
ddGroupSiftingDownOutOfMem:
while (*moves != NULL) {
move = (*moves)->next;
cuddDeallocMove(table, *moves);
*moves = move;
}
return(0);
} /* end of ddGroupSiftingDown */
/**
@brief Swaps two groups and records the move.
@return the number of keys in the %DD table in case of success; 0
otherwise.
@sideeffect None
*/
static int
ddGroupMove(
DdManager * table,
int x,
int y,
Move ** moves)
{
Move *move;
int size;
int i,j,xtop,xbot,xsize,ytop,ybot,ysize,newxtop;
int swapx = 0, swapy = 0;
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
int initialSize,bestSize;
#endif
#ifdef DD_DEBUG
/* We assume that x < y */
assert(x < y);
#endif
/* Find top, bottom, and size for the two groups. */
xbot = x;
xtop = table->subtables[x].next;
xsize = xbot - xtop + 1;
ybot = y;
while ((unsigned) ybot < table->subtables[ybot].next)
ybot = table->subtables[ybot].next;
ytop = y;
ysize = ybot - ytop + 1;
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
initialSize = bestSize = table->keys - table->isolated;
#endif
/* Sift the variables of the second group up through the first group */
for (i = 1; i <= ysize; i++) {
for (j = 1; j <= xsize; j++) {
size = cuddSwapInPlace(table,x,y);
if (size == 0) goto ddGroupMoveOutOfMem;
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
if (size < bestSize)
bestSize = size;
#endif
swapx = x; swapy = y;
y = x;
x = cuddNextLow(table,y);
}
y = ytop + i;
x = cuddNextLow(table,y);
}
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
if ((bestSize < initialSize) && (bestSize < size))
(void) fprintf(table->out,"Missed local minimum: initialSize:%d bestSize:%d finalSize:%d\n",initialSize,bestSize,size);
#endif
/* fix groups */
y = xtop; /* ytop is now where xtop used to be */
for (i = 0; i < ysize - 1; i++) {
table->subtables[y].next = cuddNextHigh(table,y);
y = cuddNextHigh(table,y);
}
table->subtables[y].next = xtop; /* y is bottom of its group, join */
/* it to top of its group */
x = cuddNextHigh(table,y);
newxtop = x;
for (i = 0; i < xsize - 1; i++) {
table->subtables[x].next = cuddNextHigh(table,x);
x = cuddNextHigh(table,x);
}
table->subtables[x].next = newxtop; /* x is bottom of its group, join */
/* it to top of its group */
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,"ddGroupMove:\n");
#endif
/* Store group move */
move = (Move *) cuddDynamicAllocNode(table);
if (move == NULL) goto ddGroupMoveOutOfMem;
move->x = swapx;
move->y = swapy;
move->flags = MTR_DEFAULT;
move->size = (int) (table->keys - table->isolated);
move->next = *moves;
*moves = move;
return((int)(table->keys - table->isolated));
ddGroupMoveOutOfMem:
while (*moves != NULL) {
move = (*moves)->next;
cuddDeallocMove(table, *moves);
*moves = move;
}
return(0);
} /* end of ddGroupMove */
/**
@brief Undoes the swap two groups.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/
static int
ddGroupMoveBackward(
DdManager * table,
int x,
int y)
{
int size;
int i,j,xtop,xbot,xsize,ytop,ybot,ysize,newxtop;
#ifdef DD_DEBUG
/* We assume that x < y */
assert(x < y);
#endif
/* Find top, bottom, and size for the two groups. */
xbot = x;
xtop = table->subtables[x].next;
xsize = xbot - xtop + 1;
ybot = y;
while ((unsigned) ybot < table->subtables[ybot].next)
ybot = table->subtables[ybot].next;
ytop = y;
ysize = ybot - ytop + 1;
/* Sift the variables of the second group up through the first group */
for (i = 1; i <= ysize; i++) {
for (j = 1; j <= xsize; j++) {
size = cuddSwapInPlace(table,x,y);
if (size == 0)
return(0);
y = x;
x = cuddNextLow(table,y);
}
y = ytop + i;
x = cuddNextLow(table,y);
}
/* fix groups */
y = xtop;
for (i = 0; i < ysize - 1; i++) {
table->subtables[y].next = cuddNextHigh(table,y);
y = cuddNextHigh(table,y);
}
table->subtables[y].next = xtop; /* y is bottom of its group, join */
/* to its top */
x = cuddNextHigh(table,y);
newxtop = x;
for (i = 0; i < xsize - 1; i++) {
table->subtables[x].next = cuddNextHigh(table,x);
x = cuddNextHigh(table,x);
}
table->subtables[x].next = newxtop; /* x is bottom of its group, join */
/* to its top */
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,"ddGroupMoveBackward:\n");
#endif
return(1);
} /* end of ddGroupMoveBackward */
/**
@brief Determines the best position for a variables and returns
it there.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/
static int
ddGroupSiftingBackward(
DdManager * table,
Move * moves,
int size,
int upFlag,
int lazyFlag)
{
Move *move;
int res;
Move *end_move = NULL;
int diff, tmp_diff;
int index;
unsigned int pairlev;
if (lazyFlag) {
end_move = NULL;
/* Find the minimum size, and the earliest position at which it
** was achieved. */
for (move = moves; move != NULL; move = move->next) {
if (move->size < size) {
size = move->size;
end_move = move;
} else if (move->size == size) {
if (end_move == NULL) end_move = move;
}
}
/* Find among the moves that give minimum size the one that
** minimizes the distance from the corresponding variable. */
if (moves != NULL) {
diff = Cudd_ReadSize(table) + 1;
index = (upFlag == 1) ?
table->invperm[moves->x] : table->invperm[moves->y];
pairlev =
(unsigned) table->perm[Cudd_bddReadPairIndex(table, index)];
for (move = moves; move != NULL; move = move->next) {
if (move->size == size) {
if (upFlag == 1) {
tmp_diff = (move->x > pairlev) ?
move->x - pairlev : pairlev - move->x;
} else {
tmp_diff = (move->y > pairlev) ?
move->y - pairlev : pairlev - move->y;
}
if (tmp_diff < diff) {
diff = tmp_diff;
end_move = move;
}
}
}
}
} else {
/* Find the minimum size. */
for (move = moves; move != NULL; move = move->next) {
if (move->size < size) {
size = move->size;
}
}
}
/* In case of lazy sifting, end_move identifies the position at
** which we want to stop. Otherwise, we stop as soon as we meet
** the minimum size. */
for (move = moves; move != NULL; move = move->next) {
if (lazyFlag) {
if (move == end_move) return(1);
} else {
if (move->size == size) return(1);
}
if ((table->subtables[move->x].next == move->x) &&
(table->subtables[move->y].next == move->y)) {
res = cuddSwapInPlace(table,(int)move->x,(int)move->y);
if (!res) return(0);
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0)
(void) fprintf(table->out,"ddGroupSiftingBackward:\n");
assert(table->subtables[move->x].next == move->x);
assert(table->subtables[move->y].next == move->y);
#endif
} else { /* Group move necessary */
if (move->flags == MTR_NEWNODE) {
ddDissolveGroup(table,(int)move->x,(int)move->y);
} else {
res = ddGroupMoveBackward(table,(int)move->x,(int)move->y);
if (!res) return(0);
}
}
}
return(1);
} /* end of ddGroupSiftingBackward */
/**
@brief Merges groups in the %DD table.
@details Creates a single group from low to high and adjusts the
index field of the tree node.
@sideeffect None
*/
static void
ddMergeGroups(
DdManager * table,
MtrNode * treenode,
int low,
int high)
{
int i;
MtrNode *auxnode;
int saveindex;
int newindex;
/* Merge all variables from low to high in one group, unless
** this is the topmost group. In such a case we do not merge lest
** we lose the symmetry information. */
if (treenode != table->tree) {
for (i = low; i < high; i++)
table->subtables[i].next = i+1;
table->subtables[high].next = low;
}
/* Adjust the index fields of the tree nodes. If a node is the
** first child of its parent, then the parent may also need adjustment. */
saveindex = treenode->index;
newindex = table->invperm[low];
auxnode = treenode;
do {
auxnode->index = newindex;
if (auxnode->parent == NULL ||
(int) auxnode->parent->index != saveindex)
break;
auxnode = auxnode->parent;
} while (1);
return;
} /* end of ddMergeGroups */
/**
@brief Dissolves a group in the %DD table.
@details x and y are variables in a group to be cut in two. The cut
is to pass between x and y.
@sideeffect None
*/
static void
ddDissolveGroup(
DdManager * table,
int x,
int y)
{
int topx;
int boty;
/* find top and bottom of the two groups */
boty = y;
while ((unsigned) boty < table->subtables[boty].next)
boty = table->subtables[boty].next;
topx = table->subtables[boty].next;
table->subtables[boty].next = y;
table->subtables[x].next = topx;
return;
} /* end of ddDissolveGroup */
/**
@brief Pretends to check two variables for aggregation.
@return always 0.
@sideeffect None
*/
static int
ddNoCheck(
DdManager * table,
int x,
int y)
{
(void) table; /* avoid warning */
(void) x; /* avoid warning */
(void) y; /* avoid warning */
return(0);
} /* end of ddNoCheck */
/**
@brief Checks two variables for aggregation.
@details The check is based on the second difference of the number
of nodes as a function of the layer. If the second difference is
lower than a given threshold (typically negative) then the two
variables should be aggregated.
@return 1 if the two variables pass the test; 0 otherwise.
@sideeffect None
*/
static int
ddSecDiffCheck(
DdManager * table,
int x,
int y)
{
double Nx,Nx_1;
double Sx;
double threshold;
int xindex,yindex;
if (x==0) return(0);
#ifdef DD_STATS
table->secdiffcalls++;
#endif
Nx = (double) table->subtables[x].keys;
Nx_1 = (double) table->subtables[x-1].keys;
Sx = (table->subtables[y].keys/Nx) - (Nx/Nx_1);
threshold = table->recomb / 100.0;
if (Sx < threshold) {
xindex = table->invperm[x];
yindex = table->invperm[y];
if (cuddTestInteract(table,xindex,yindex)) {
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
(void) fprintf(table->out,
"Second difference for %d = %g Pos(%d)\n",
table->invperm[x],Sx,x);
#endif
#ifdef DD_STATS
table->secdiff++;
#endif
return(1);
} else {
#ifdef DD_STATS
table->secdiffmisfire++;
#endif
return(0);
}
}
return(0);
} /* end of ddSecDiffCheck */
/**
@brief Checks for extended symmetry of x and y.
@return 1 in case of extended symmetry; 0 otherwise.
@sideeffect None
*/
static int
ddExtSymmCheck(
DdManager * table,
int x,
int y)
{
DdNode *f,*f0,*f1,*f01,*f00,*f11,*f10;
DdNode *one;
int comple; /* f0 is complemented */
int notproj; /* f is not a projection function */
int arccount; /* number of arcs from layer x to layer y */
int TotalRefCount; /* total reference count of layer y minus 1 */
int counter; /* number of nodes of layer x that are allowed */
/* to violate extended symmetry conditions */
int arccounter; /* number of arcs into layer y that are allowed */
/* to come from layers other than x */
int i;
int xindex;
int yindex;
int res;
int slots;
DdNodePtr *list;
DdNode *sentinel = &(table->sentinel);
xindex = table->invperm[x];
yindex = table->invperm[y];
/* If the two variables do not interact, we do not want to merge them. */
if (!cuddTestInteract(table,xindex,yindex))
return(0);
#ifdef DD_DEBUG
/* Checks that x and y do not contain just the projection functions.
** With the test on interaction, these test become redundant,
** because an isolated projection function does not interact with
** any other variable.
*/
if (table->subtables[x].keys == 1) {
assert(table->vars[xindex]->ref != 1);
}
if (table->subtables[y].keys == 1) {
assert(table->vars[yindex]->ref != 1);
}
#endif
#ifdef DD_STATS
table->extsymmcalls++;
#endif
arccount = 0;
counter = (int) (table->subtables[x].keys *
(table->symmviolation/100.0) + 0.5);
one = DD_ONE(table);
slots = table->subtables[x].slots;
list = table->subtables[x].nodelist;
for (i = 0; i < slots; i++) {
f = list[i];
while (f != sentinel) {
/* Find f1, f0, f11, f10, f01, f00. */
f1 = cuddT(f);
f0 = Cudd_Regular(cuddE(f));
comple = Cudd_IsComplement(cuddE(f));
notproj = f1 != one || f0 != one || f->ref != (DdHalfWord) 1;
if (f1->index == (unsigned) yindex) {
arccount++;
f11 = cuddT(f1); f10 = cuddE(f1);
} else {
if ((int) f0->index != yindex) {
/* If f is an isolated projection function it is
** allowed to bypass layer y.
*/
if (notproj) {
if (counter == 0)
return(0);
counter--; /* f bypasses layer y */
}
}
f11 = f10 = f1;
}
if ((int) f0->index == yindex) {
arccount++;
f01 = cuddT(f0); f00 = cuddE(f0);
} else {
f01 = f00 = f0;
}
if (comple) {
f01 = Cudd_Not(f01);
f00 = Cudd_Not(f00);
}
/* Unless we are looking at a projection function
** without external references except the one from the
** table, we insist that f01 == f10 or f11 == f00
*/
if (notproj) {
if (f01 != f10 && f11 != f00) {
if (counter == 0)
return(0);
counter--;
}
}
f = f->next;
} /* while */
} /* for */
/* Calculate the total reference counts of y */
TotalRefCount = -1; /* -1 for projection function */
slots = table->subtables[y].slots;
list = table->subtables[y].nodelist;
for (i = 0; i < slots; i++) {
f = list[i];
while (f != sentinel) {
TotalRefCount += f->ref;
f = f->next;
}
}
arccounter = (int) (table->subtables[y].keys *
(table->arcviolation/100.0) + 0.5);
res = arccount >= TotalRefCount - arccounter;
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
if (res) {
(void) fprintf(table->out,
"Found extended symmetry! x = %d\ty = %d\tPos(%d,%d)\n",
xindex,yindex,x,y);
}
#endif
#ifdef DD_STATS
if (res)
table->extsymm++;
#endif
return(res);
} /* end ddExtSymmCheck */
/**
@brief Checks for grouping of x and y.
@details This function is used for lazy sifting.
@return 1 in case of grouping; 0 otherwise.
@sideeffect None
*/
static int
ddVarGroupCheck(
DdManager * table,
int x,
int y)
{
int xindex = table->invperm[x];
int yindex = table->invperm[y];
if (Cudd_bddIsVarToBeUngrouped(table, xindex)) return(0);
if (Cudd_bddReadPairIndex(table, xindex) == yindex) {
if (ddIsVarHandled(table, xindex) ||
ddIsVarHandled(table, yindex)) {
if (Cudd_bddIsVarToBeGrouped(table, xindex) ||
Cudd_bddIsVarToBeGrouped(table, yindex) ) {
if (table->keys - table->isolated <= table->originalSize) {
return(1);
}
}
}
}
return(0);
} /* end of ddVarGroupCheck */
/**
@brief Sets a variable to already handled.
@details This function is used for lazy sifting.
@sideeffect none
*/
static int
ddSetVarHandled(
DdManager *dd,
int index)
{
if (index >= dd->size || index < 0) return(0);
dd->subtables[dd->perm[index]].varHandled = 1;
return(1);
} /* end of ddSetVarHandled */
/**
@brief Resets a variable to be processed.
@details This function is used for lazy sifting.
@sideeffect none
*/
static int
ddResetVarHandled(
DdManager *dd,
int index)
{
if (index >= dd->size || index < 0) return(0);
dd->subtables[dd->perm[index]].varHandled = 0;
return(1);
} /* end of ddResetVarHandled */
/**
@brief Checks whether a variables is already handled.
@details This function is used for lazy sifting.
@sideeffect none
*/
static int
ddIsVarHandled(
DdManager *dd,
int index)
{
if (index >= dd->size || index < 0) return(-1);
return dd->subtables[dd->perm[index]].varHandled;
} /* end of ddIsVarHandled */