The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

149 lines
4.7 KiB

from __future__ import annotations
from minigrid.core.constants import COLOR_NAMES
from minigrid.core.grid import Grid
from minigrid.core.mission import MissionSpace
from minigrid.core.world_object import Door
from minigrid.minigrid_env import MiniGridEnv
class GoToDoorEnv(MiniGridEnv):
"""
## Description
This environment is a room with four doors, one on each wall. The agent
receives a textual (mission) string as input, telling it which door to go
to, (eg: "go to the red door"). It receives a positive reward for performing
the `done` action next to the correct door, as indicated in the mission
string.
## Mission Space
"go to the {color} door"
{color} is the color of the door. Can be "red", "green", "blue", "purple",
"yellow" or "grey".
## Action Space
| Num | Name | Action |
|-----|--------------|----------------------|
| 0 | left | Turn left |
| 1 | right | Turn right |
| 2 | forward | Move forward |
| 3 | pickup | Unused |
| 4 | drop | Unused |
| 5 | toggle | Unused |
| 6 | done | Done completing task |
## Observation Encoding
- Each tile is encoded as a 3 dimensional tuple:
`(OBJECT_IDX, COLOR_IDX, STATE)`
- `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
[minigrid/minigrid.py](minigrid/minigrid.py)
- `STATE` refers to the door state with 0=open, 1=closed and 2=locked
## Rewards
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
## Termination
The episode ends if any one of the following conditions is met:
1. The agent stands next the correct door performing the `done` action.
2. Timeout (see `max_steps`).
## Registered Configurations
- `MiniGrid-GoToDoor-5x5-v0`
- `MiniGrid-GoToDoor-6x6-v0`
- `MiniGrid-GoToDoor-8x8-v0`
"""
def __init__(self, size=5, max_steps: int | None = None, **kwargs):
assert size >= 5
self.size = size
mission_space = MissionSpace(
mission_func=self._gen_mission,
ordered_placeholders=[COLOR_NAMES],
)
if max_steps is None:
max_steps = 4 * size**2
super().__init__(
mission_space=mission_space,
width=size,
height=size,
# Set this to True for maximum speed
see_through_walls=True,
max_steps=max_steps,
**kwargs,
)
@staticmethod
def _gen_mission(color: str):
return f"go to the {color} door"
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height)
# Randomly vary the room width and height
width = self._rand_int(5, width + 1)
height = self._rand_int(5, height + 1)
# Generate the surrounding walls
self.grid.wall_rect(0, 0, width, height)
# Generate the 4 doors at random positions
doorPos = []
doorPos.append((self._rand_int(2, width - 2), 0))
doorPos.append((self._rand_int(2, width - 2), height - 1))
doorPos.append((0, self._rand_int(2, height - 2)))
doorPos.append((width - 1, self._rand_int(2, height - 2)))
# Generate the door colors
doorColors = []
while len(doorColors) < len(doorPos):
color = self._rand_elem(COLOR_NAMES)
if color in doorColors:
continue
doorColors.append(color)
# Place the doors in the grid
for idx, pos in enumerate(doorPos):
color = doorColors[idx]
self.grid.set(*pos, Door(color))
# Randomize the agent start position and orientation
self.place_agent(size=(width, height))
# Select a random target door
doorIdx = self._rand_int(0, len(doorPos))
self.target_pos = doorPos[doorIdx]
self.target_color = doorColors[doorIdx]
# Generate the mission string
self.mission = "go to the %s door" % self.target_color
def step(self, action):
obs, reward, terminated, truncated, info = super().step(action)
ax, ay = self.agent_pos
tx, ty = self.target_pos
# Don't let the agent open any of the doors
if action == self.actions.toggle:
terminated = True
# Reward performing done action in front of the target door
if action == self.actions.done:
if (ax == tx and abs(ay - ty) == 1) or (ay == ty and abs(ax - tx) == 1):
reward = self._reward()
terminated = True
return obs, reward, terminated, truncated, info