The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

168 lines
7.5 KiB

/* A solver for the Japanese number-puzzle Hashiwokakero
* (http://en.wikipedia.org/wiki/Hashiwokakero)
*
* Sebastian Nowozin <nowozin@gmail.com>, 13th January 2009
*/
param n := 25;
set rows := 1..n;
set cols := 1..n;
param givens{rows, cols}, integer, >= 0, <= 8, default 0;
/* Set of vertices as (row,col) coordinates */
set V := { (i,j) in { rows, cols }: givens[i,j] != 0 };
/* Set of feasible horizontal edges from (i,j) to (k,l) rightwards */
set Eh := { (i,j,k,l) in { V, V }:
i = k and j < l and # Same row and left to right
card({ (s,t) in V: s = i and t > j and t < l }) = 0 # No vertex inbetween
};
/* Set of feasible vertical edges from (i,j) to (k,l) downwards */
set Ev := { (i,j,k,l) in { V, V }:
j = l and i < k and # Same column and top to bottom
card({ (s,t) in V: t = j and s > i and s < k }) = 0 # No vertex inbetween
};
set E := Eh union Ev;
/* Indicators: use edge once/twice */
var xe1{E}, binary;
var xe2{E}, binary;
/* Constraint: Do not use edge or do use once or do use twice */
s.t. edge_sel{(i,j,k,l) in E}:
xe1[i,j,k,l] + xe2[i,j,k,l] <= 1;
/* Constraint: There must be as many edges used as the node value */
s.t. satisfy_vertex_demand{(s,t) in V}:
sum{(i,j,k,l) in E: (i = s and j = t) or (k = s and l = t)}
(xe1[i,j,k,l] + 2.0*xe2[i,j,k,l]) = givens[s,t];
/* Constraint: No crossings */
s.t. no_crossing1{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
s < i and u > i and j < t and l > t}:
xe1[i,j,k,l] + xe1[s,t,u,v] <= 1;
s.t. no_crossing2{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
s < i and u > i and j < t and l > t}:
xe1[i,j,k,l] + xe2[s,t,u,v] <= 1;
s.t. no_crossing3{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
s < i and u > i and j < t and l > t}:
xe2[i,j,k,l] + xe1[s,t,u,v] <= 1;
s.t. no_crossing4{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
s < i and u > i and j < t and l > t}:
xe2[i,j,k,l] + xe2[s,t,u,v] <= 1;
/* Model connectivity by auxiliary network flow problem:
* One vertex becomes a target node and all other vertices send a unit flow
* to it. The edge selection variables xe1/xe2 are VUB constraints and
* therefore xe1/xe2 select the feasible graph for the max-flow problems.
*/
set node_target := { (s,t) in V:
card({ (i,j) in V: i < s or (i = s and j < t) }) = 0};
set node_sources := { (s,t) in V: (s,t) not in node_target };
var flow_forward{ E }, >= 0;
var flow_backward{ E }, >= 0;
s.t. flow_conservation{ (s,t) in node_target, (p,q) in V }:
/* All incoming flows */
- sum{(i,j,k,l) in E: k = p and l = q} flow_forward[i,j,k,l]
- sum{(i,j,k,l) in E: i = p and j = q} flow_backward[i,j,k,l]
/* All outgoing flows */
+ sum{(i,j,k,l) in E: k = p and l = q} flow_backward[i,j,k,l]
+ sum{(i,j,k,l) in E: i = p and j = q} flow_forward[i,j,k,l]
= 0 + (if (p = s and q = t) then card(node_sources) else -1);
/* Variable-Upper-Bound (VUB) constraints: xe1/xe2 bound the flows.
*/
s.t. connectivity_vub1{(i,j,k,l) in E}:
flow_forward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]);
s.t. connectivity_vub2{(i,j,k,l) in E}:
flow_backward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]);
/* A feasible solution is enough
*/
minimize cost: 0;
solve;
/* Output solution graphically */
printf "\nSolution:\n";
for { row in rows } {
for { col in cols } {
/* First print this cell information: givens or space */
printf{0..0: givens[row,col] != 0} "%d", givens[row,col];
printf{0..0: givens[row,col] = 0 and
card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
xe1[i,j,k,l] = 1}) = 1} "-";
printf{0..0: givens[row,col] = 0 and
card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
xe2[i,j,k,l] = 1}) = 1} "=";
printf{0..0: givens[row,col] = 0
and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
xe1[i,j,k,l] = 1}) = 1} "|";
printf{0..0: givens[row,col] = 0
and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
xe2[i,j,k,l] = 1}) = 1} '"';
printf{0..0: givens[row,col] = 0
and card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
(xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0
and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
(xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0} " ";
/* Now print any edges */
printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe1[i,j,k,l] = 1} "-";
printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe2[i,j,k,l] = 1} "=";
printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and
xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " ";
printf{0..0: card({(i,j,k,l) in Eh: i = row and col >= j and col < l}) = 0} " ";
}
printf "\n";
for { col in cols } {
printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe1[i,j,k,l] = 1} "|";
printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe2[i,j,k,l] = 1} '"';
printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and
xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " ";
/* No vertical edges: skip also a field */
printf{0..0: card({(i,j,k,l) in Ev: j = col and row >= i and row < k}) = 0} " ";
printf " ";
}
printf "\n";
}
data;
/* This is a difficult 25x25 Hashiwokakero.
*/
param givens : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 :=
1 2 . 2 . 2 . . 2 . 2 . . 2 . . . . 2 . 2 . 2 . 2 .
2 . 1 . . . . 2 . . . 4 . . 5 . 2 . . 1 . 2 . 2 . 1
3 2 . . 5 . 4 . . 3 . . . . . 1 . . 4 . 5 . 1 . 1 .
4 . . . . . . . . . . . 1 . 3 . . 1 . . . . . . . .
5 2 . . 6 . 6 . . 8 . 5 . 2 . . 3 . 5 . 7 . . 2 . .
6 . 1 . . . . . . . . . 1 . . 2 . . . . . 1 . . . 3
7 2 . . . . 5 . . 6 . 4 . . 2 . . . 2 . 5 . 4 . 2 .
8 . 2 . 2 . . . . . . . . . . . 3 . . 3 . . . 1 . 2
9 . . . . . . . . . . 4 . 2 . 2 . . 1 . . . 3 . 1 .
10 2 . 3 . . 6 . . 2 . . . . . . . . . . 3 . . . . .
11 . . . . 1 . . 2 . . 5 . . 1 . 4 . 3 . . . . 2 . 4
12 . . 2 . . 1 . . . . . . 5 . 4 . . . . 4 . 3 . . .
13 2 . . . 3 . 1 . . . . . . . . 3 . . 5 . 5 . . 2 .
14 . . . . . 2 . 5 . . 7 . 5 . 3 . 1 . . 1 . . 1 . 4
15 2 . 5 . 3 . . . . 1 . 2 . 1 . . . . 2 . 4 . . 2 .
16 . . . . . 1 . . . . . . . . . . 2 . . 2 . 1 . . 3
17 2 . 6 . 6 . . 2 . . 2 . 2 . 5 . . . . . 2 . . . .
18 . . . . . 1 . . . 3 . . . . . 1 . . 1 . . 4 . 3 .
19 . . 4 . 5 . . 2 . . . 2 . . 6 . 6 . . 3 . . . . 3
20 2 . . . . . . . . . 2 . . 1 . . . . . . 1 . . 1 .
21 . . 3 . . 3 . 5 . 5 . . 4 . 6 . 7 . . 4 . 6 . . 4
22 2 . . . 3 . 5 . 2 . 1 . . . . . . . . . . . . . .
23 . . . . . . . . . 1 . . . . . . 3 . 2 . . 5 . . 5
24 2 . 3 . 3 . 5 . 4 . 3 . 3 . 4 . . 2 . 2 . . . 1 .
25 . 1 . 2 . 2 . . . 2 . 2 . . . 2 . . . . 2 . 2 . 2
;
end;