The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

391 lines
11 KiB

from __future__ import annotations
import math
import gymnasium as gym
import numpy as np
import pytest
from minigrid.core.actions import Actions
from minigrid.core.constants import OBJECT_TO_IDX
from minigrid.envs import EmptyEnv
from minigrid.wrappers import (
ActionBonus,
DictObservationSpaceWrapper,
DirectionObsWrapper,
FlatObsWrapper,
FullyObsWrapper,
ImgObsWrapper,
NoDeath,
OneHotPartialObsWrapper,
PositionBonus,
ReseedWrapper,
RGBImgObsWrapper,
RGBImgPartialObsWrapper,
StochasticActionWrapper,
SymbolicObsWrapper,
ViewSizeWrapper,
)
from tests.utils import all_testing_env_specs, assert_equals, minigrid_testing_env_specs
SEEDS = [100, 243, 500]
NUM_STEPS = 100
@pytest.mark.parametrize(
"env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
)
def test_reseed_wrapper(env_spec):
"""
Test the ReseedWrapper with a list of SEEDS.
"""
unwrapped_env = env_spec.make()
env = env_spec.make()
env = ReseedWrapper(env, seeds=SEEDS)
env.action_space.seed(0)
for seed in SEEDS:
env.reset()
unwrapped_env.reset(seed=seed)
for time_step in range(NUM_STEPS):
action = env.action_space.sample()
obs, rew, terminated, truncated, info = env.step(action)
(
unwrapped_obs,
unwrapped_rew,
unwrapped_terminated,
unwrapped_truncated,
unwrapped_info,
) = unwrapped_env.step(action)
assert_equals(obs, unwrapped_obs, f"[{time_step}] ")
assert unwrapped_env.observation_space.contains(obs)
assert (
rew == unwrapped_rew
), f"[{time_step}] reward={rew}, unwrapped reward={unwrapped_rew}"
assert (
terminated == unwrapped_terminated
), f"[{time_step}] terminated={terminated}, unwrapped terminated={unwrapped_terminated}"
assert (
truncated == unwrapped_truncated
), f"[{time_step}] truncated={truncated}, unwrapped truncated={unwrapped_truncated}"
assert_equals(info, unwrapped_info, f"[{time_step}] ")
# Start the next seed
if terminated or truncated:
break
env.close()
unwrapped_env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-Empty-16x16-v0"])
def test_position_bonus_wrapper(env_id):
env = gym.make(env_id)
wrapped_env = PositionBonus(gym.make(env_id))
action_forward = Actions.forward
action_left = Actions.left
action_right = Actions.right
for _ in range(10):
wrapped_env.reset()
for _ in range(5):
wrapped_env.step(action_forward)
# Turn lef 3 times (check that actions don't influence bonus)
for _ in range(3):
_, wrapped_rew, _, _, _ = wrapped_env.step(action_left)
env.reset()
for _ in range(5):
env.step(action_forward)
# Turn right 3 times
for _ in range(3):
_, rew, _, _, _ = env.step(action_right)
expected_bonus_reward = rew + 1 / math.sqrt(13)
assert expected_bonus_reward == wrapped_rew
@pytest.mark.parametrize("env_id", ["MiniGrid-Empty-16x16-v0"])
def test_action_bonus_wrapper(env_id):
env = gym.make(env_id)
wrapped_env = ActionBonus(gym.make(env_id))
action = Actions.forward
for _ in range(10):
wrapped_env.reset()
for _ in range(5):
_, wrapped_rew, _, _, _ = wrapped_env.step(action)
env.reset()
for _ in range(5):
_, rew, _, _, _ = env.step(action)
expected_bonus_reward = rew + 1 / math.sqrt(10)
assert expected_bonus_reward == wrapped_rew
@pytest.mark.parametrize(
"env_spec",
minigrid_testing_env_specs,
ids=[spec.id for spec in minigrid_testing_env_specs],
) # DictObservationSpaceWrapper is not compatible with BabyAI levels. See minigrid/wrappers.py for more details.
def test_dict_observation_space_wrapper(env_spec):
env = env_spec.make()
env = DictObservationSpaceWrapper(env)
env.reset()
mission = env.mission
obs, _, _, _, _ = env.step(0)
assert env.string_to_indices(mission) == [
value for value in obs["mission"] if value != 0
]
env.close()
@pytest.mark.parametrize(
"wrapper",
[
ReseedWrapper,
ImgObsWrapper,
FlatObsWrapper,
ViewSizeWrapper,
DictObservationSpaceWrapper,
OneHotPartialObsWrapper,
RGBImgPartialObsWrapper,
FullyObsWrapper,
],
)
@pytest.mark.parametrize(
"env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
)
def test_main_wrappers(wrapper, env_spec):
if (
wrapper in (DictObservationSpaceWrapper, FlatObsWrapper)
and env_spec not in minigrid_testing_env_specs
):
# DictObservationSpaceWrapper and FlatObsWrapper are not compatible with BabyAI levels
# See minigrid/wrappers.py for more details
pytest.skip()
env = env_spec.make()
env = wrapper(env)
for _ in range(10):
env.reset()
env.step(0)
env.close()
@pytest.mark.parametrize(
"wrapper",
[
OneHotPartialObsWrapper,
RGBImgPartialObsWrapper,
FullyObsWrapper,
],
)
@pytest.mark.parametrize(
"env_spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
)
def test_observation_space_wrappers(wrapper, env_spec):
env = wrapper(env_spec.make(disable_env_checker=True))
obs_space, wrapper_name = env.observation_space, wrapper.__name__
assert isinstance(
obs_space, gym.spaces.Dict
), f"Observation space for {wrapper_name} is not a Dict: {obs_space}."
# This should not fail either
ImgObsWrapper(env)
env.reset()
env.step(0)
env.close()
class EmptyEnvWithExtraObs(EmptyEnv):
"""
Custom environment with an extra observation
"""
def __init__(self) -> None:
super().__init__(size=5)
self.observation_space["size"] = gym.spaces.Box(
low=0, high=np.iinfo(np.uint).max, shape=(2,), dtype=np.uint
)
def reset(self, **kwargs):
obs, info = super().reset(**kwargs)
obs["size"] = np.array([self.width, self.height])
return obs, info
def step(self, action):
obs, reward, terminated, truncated, info = super().step(action)
obs["size"] = np.array([self.width, self.height])
return obs, reward, terminated, truncated, info
@pytest.mark.parametrize(
"wrapper",
[
OneHotPartialObsWrapper,
RGBImgObsWrapper,
RGBImgPartialObsWrapper,
FullyObsWrapper,
],
)
def test_agent_sees_method(wrapper):
env1 = wrapper(EmptyEnvWithExtraObs())
env2 = wrapper(gym.make("MiniGrid-Empty-5x5-v0"))
obs1, _ = env1.reset(seed=0)
obs2, _ = env2.reset(seed=0)
assert "size" in obs1
assert obs1["size"].shape == (2,)
assert (obs1["size"] == [5, 5]).all()
for key in obs2:
assert np.array_equal(obs1[key], obs2[key])
obs1, reward1, terminated1, truncated1, _ = env1.step(0)
obs2, reward2, terminated2, truncated2, _ = env2.step(0)
assert "size" in obs1
assert obs1["size"].shape == (2,)
assert (obs1["size"] == [5, 5]).all()
for key in obs2:
assert np.array_equal(obs1[key], obs2[key])
@pytest.mark.parametrize("view_size", [5, 7, 9])
def test_viewsize_wrapper(view_size):
env = gym.make("MiniGrid-Empty-5x5-v0")
env = ViewSizeWrapper(env, agent_view_size=view_size)
env.reset()
obs, _, _, _, _ = env.step(0)
assert obs["image"].shape == (view_size, view_size, 3)
env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-LavaCrossingS11N5-v0"])
@pytest.mark.parametrize("type", ["slope", "angle"])
def test_direction_obs_wrapper(env_id, type):
env = gym.make(env_id)
env = DirectionObsWrapper(env, type=type)
obs, _ = env.reset()
slope = np.divide(
env.goal_position[1] - env.agent_pos[1],
env.goal_position[0] - env.agent_pos[0],
)
if type == "slope":
assert obs["goal_direction"] == slope
elif type == "angle":
assert obs["goal_direction"] == np.arctan(slope)
obs, _, _, _, _ = env.step(0)
slope = np.divide(
env.goal_position[1] - env.agent_pos[1],
env.goal_position[0] - env.agent_pos[0],
)
if type == "slope":
assert obs["goal_direction"] == slope
elif type == "angle":
assert obs["goal_direction"] == np.arctan(slope)
env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-DistShift1-v0"])
def test_symbolic_obs_wrapper(env_id):
env = gym.make(env_id)
env = SymbolicObsWrapper(env)
obs, _ = env.reset(seed=123)
agent_pos = env.agent_pos
goal_pos = env.goal_pos
assert obs["image"].shape == (env.width, env.height, 3)
assert np.alltrue(
obs["image"][agent_pos[0], agent_pos[1], :]
== np.array([agent_pos[0], agent_pos[1], OBJECT_TO_IDX["agent"]])
)
assert np.alltrue(
obs["image"][goal_pos[0], goal_pos[1], :]
== np.array([goal_pos[0], goal_pos[1], OBJECT_TO_IDX["goal"]])
)
obs, _, _, _, _ = env.step(2)
agent_pos = env.agent_pos
goal_pos = env.goal_pos
assert obs["image"].shape == (env.width, env.height, 3)
assert np.alltrue(
obs["image"][agent_pos[0], agent_pos[1], :]
== np.array([agent_pos[0], agent_pos[1], OBJECT_TO_IDX["agent"]])
)
assert np.alltrue(
obs["image"][goal_pos[0], goal_pos[1], :]
== np.array([goal_pos[0], goal_pos[1], OBJECT_TO_IDX["goal"]])
)
env.close()
@pytest.mark.parametrize("env_id", ["MiniGrid-Empty-16x16-v0"])
def test_stochastic_action_wrapper(env_id):
env = gym.make(env_id)
env = StochasticActionWrapper(env, prob=0.2)
_, _ = env.reset()
for _ in range(20):
_, _, _, _, _ = env.step(0)
env.close()
env = gym.make(env_id)
env = StochasticActionWrapper(env, prob=0.2, random_action=1)
_, _ = env.reset()
for _ in range(20):
_, _, _, _, _ = env.step(0)
env.close()
def test_dict_observation_space_doesnt_clash_with_one_hot():
env = gym.make("MiniGrid-Empty-5x5-v0")
env = OneHotPartialObsWrapper(env)
env = DictObservationSpaceWrapper(env)
env.reset()
obs, _, _, _, _ = env.step(0)
assert obs["image"].shape == (7, 7, 20)
assert env.observation_space["image"].shape == (7, 7, 20)
env.close()
def test_no_death_wrapper():
death_cost = -1
env = gym.make("MiniGrid-LavaCrossingS9N1-v0")
_, _ = env.reset(seed=2)
_, _, _, _, _ = env.step(1)
_, reward, term, *_ = env.step(2)
env_wrap = NoDeath(env, ("lava",), death_cost)
_, _ = env_wrap.reset(seed=2)
_, _, _, _, _ = env_wrap.step(1)
_, reward_wrap, term_wrap, *_ = env_wrap.step(2)
assert term and not term_wrap
assert reward_wrap == reward + death_cost
env.close()
env_wrap.close()
env = gym.make("MiniGrid-Dynamic-Obstacles-5x5-v0")
_, _ = env.reset(seed=2)
_, reward, term, *_ = env.step(2)
env = NoDeath(env, ("ball",), death_cost)
_, _ = env.reset(seed=2)
_, reward_wrap, term_wrap, *_ = env.step(2)
assert term and not term_wrap
assert reward_wrap == reward + death_cost
env.close()
env_wrap.close()