The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

128 lines
3.8 KiB

from __future__ import annotations
from minigrid.core.grid import Grid
from minigrid.core.mission import MissionSpace
from minigrid.core.world_object import Goal
from minigrid.minigrid_env import MiniGridEnv
class FourRoomsEnv(MiniGridEnv):
"""
## Description
Classic four room reinforcement learning environment. The agent must
navigate in a maze composed of four rooms interconnected by 4 gaps in the
walls. To obtain a reward, the agent must reach the green goal square. Both
the agent and the goal square are randomly placed in any of the four rooms.
## Mission Space
"reach the goal"
## Action Space
| Num | Name | Action |
|-----|--------------|--------------|
| 0 | left | Turn left |
| 1 | right | Turn right |
| 2 | forward | Move forward |
| 3 | pickup | Unused |
| 4 | drop | Unused |
| 5 | toggle | Unused |
| 6 | done | Unused |
## Observation Encoding
- Each tile is encoded as a 3 dimensional tuple:
`(OBJECT_IDX, COLOR_IDX, STATE)`
- `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
[minigrid/minigrid.py](minigrid/minigrid.py)
- `STATE` refers to the door state with 0=open, 1=closed and 2=locked
## Rewards
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
## Termination
The episode ends if any one of the following conditions is met:
1. The agent reaches the goal.
2. Timeout (see `max_steps`).
## Registered Configurations
- `MiniGrid-FourRooms-v0`
"""
def __init__(self, agent_pos=None, goal_pos=None, max_steps=100, **kwargs):
self._agent_default_pos = agent_pos
self._goal_default_pos = goal_pos
self.size = 19
mission_space = MissionSpace(mission_func=self._gen_mission)
super().__init__(
mission_space=mission_space,
width=self.size,
height=self.size,
max_steps=max_steps,
**kwargs,
)
@staticmethod
def _gen_mission():
return "reach the goal"
def _gen_grid(self, width, height):
# Create the grid
self.grid = Grid(width, height)
# Generate the surrounding walls
self.grid.horz_wall(0, 0)
self.grid.horz_wall(0, height - 1)
self.grid.vert_wall(0, 0)
self.grid.vert_wall(width - 1, 0)
room_w = width // 2
room_h = height // 2
# For each row of rooms
for j in range(0, 2):
# For each column
for i in range(0, 2):
xL = i * room_w
yT = j * room_h
xR = xL + room_w
yB = yT + room_h
# Bottom wall and door
if i + 1 < 2:
self.grid.vert_wall(xR, yT, room_h)
pos = (xR, self._rand_int(yT + 1, yB))
self.grid.set(*pos, None)
# Bottom wall and door
if j + 1 < 2:
self.grid.horz_wall(xL, yB, room_w)
pos = (self._rand_int(xL + 1, xR), yB)
self.grid.set(*pos, None)
# Randomize the player start position and orientation
if self._agent_default_pos is not None:
self.agent_pos = self._agent_default_pos
self.grid.set(*self._agent_default_pos, None)
# assuming random start direction
self.agent_dir = self._rand_int(0, 4)
else:
self.place_agent()
if self._goal_default_pos is not None:
goal = Goal()
self.put_obj(goal, *self._goal_default_pos)
goal.init_pos, goal.cur_pos = self._goal_default_pos
else:
self.place_obj(Goal())