The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

146 lines
4.4 KiB

import stormpy
import stormpy.logic
from stormpy.storage import BitVector
from stormpy.utility import ShortestPathsGenerator
from stormpy.utility import MatrixFormat
from helpers.helper import get_example_path
import pytest
import math
# this is admittedly slightly overengineered
class ModelWithKnownShortestPaths:
"""Knuth's die model with reference kSP methods"""
def __init__(self):
self.target_label = "one"
program_path = get_example_path("dtmc", "die.pm")
raw_formula = "P=? [ F \"" + self.target_label + "\" ]"
program = stormpy.parse_prism_program(program_path)
formulas = stormpy.parse_properties_for_prism_program(raw_formula, program)
self.model = stormpy.build_model(program, formulas)
def probability(self, k):
return (1 / 2) ** ((2 * k) + 1)
def state_set(self, k):
return BitVector(self.model.nr_states, [0, 1, 3, 7])
def path(self, k):
path = [0] + k * [1, 3] + [7]
return list(reversed(path)) # SPG returns traversal from back
@pytest.fixture(scope="module", params=[1, 2, 3, 3000, 42])
def index(request):
return request.param
@pytest.fixture(scope="module")
def model_with_known_shortest_paths():
return ModelWithKnownShortestPaths()
@pytest.fixture(scope="module")
def model(model_with_known_shortest_paths):
return model_with_known_shortest_paths.model
@pytest.fixture(scope="module")
def expected_distance(model_with_known_shortest_paths):
return model_with_known_shortest_paths.probability
@pytest.fixture(scope="module")
def expected_state_set(model_with_known_shortest_paths):
return model_with_known_shortest_paths.state_set
@pytest.fixture(scope="module")
def expected_path(model_with_known_shortest_paths):
return model_with_known_shortest_paths.path
@pytest.fixture(scope="module")
def target_label(model_with_known_shortest_paths):
return model_with_known_shortest_paths.target_label
@pytest.fixture
def state(model):
some_state = 7
assert model.nr_states > some_state, "test model too small"
return some_state
@pytest.fixture
def state_list(model):
some_state_list = [4, 5, 7]
assert model.nr_states > max(some_state_list), "test model too small"
return some_state_list
@pytest.fixture
def state_bitvector(model, state_list):
return BitVector(length=model.nr_states, set_entries=state_list)
@pytest.fixture
def transition_matrix(model):
return model.transition_matrix
@pytest.fixture
def target_prob_map(model, state_list):
return {i: (1.0 if i in state_list else 0.0) for i in range(model.nr_states)}
@pytest.fixture
def target_prob_list(target_prob_map):
return [target_prob_map[i] for i in range(max(target_prob_map.keys()))]
@pytest.fixture
def initial_states(model):
return BitVector(model.nr_states, model.initial_states)
@pytest.fixture
def matrix_format():
return MatrixFormat.Straight
class TestShortestPaths:
def test_spg_ctor_bitvector_target(self, model, state_bitvector):
_ = ShortestPathsGenerator(model, state_bitvector)
def test_spg_ctor_single_state_target(self, model, state):
_ = ShortestPathsGenerator(model, state)
def test_spg_ctor_state_list_target(self, model, state_list):
_ = ShortestPathsGenerator(model, state_list)
def test_spg_ctor_label_target(self, model, target_label):
_ = ShortestPathsGenerator(model, target_label)
def test_spg_ctor_matrix_vector(self, transition_matrix, target_prob_list, initial_states, matrix_format):
_ = ShortestPathsGenerator(transition_matrix, target_prob_list, initial_states, matrix_format)
def test_spg_ctor_matrix_map(self, transition_matrix, target_prob_map, initial_states, matrix_format):
_ = ShortestPathsGenerator(transition_matrix, target_prob_map, initial_states, matrix_format)
def test_spg_distance(self, model, target_label, index, expected_distance):
spg = ShortestPathsGenerator(model, target_label)
assert math.isclose(spg.get_distance(index), expected_distance(index))
def test_spg_state_set(self, model, target_label, index, expected_state_set):
spg = ShortestPathsGenerator(model, target_label)
assert spg.get_states(index) == expected_state_set(index)
def test_spg_state_list(self, model, target_label, index, expected_path):
spg = ShortestPathsGenerator(model, target_label)
assert spg.get_path_as_list(index) == expected_path(index)