The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
 

158 lines
7.6 KiB

import stormpy
import stormpy.info
import stormpy.logic
from helpers.helper import get_example_path
from configurations import pars
@pars
class TestParametric:
def test_parametric_model_checking_sparse(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
prop = "P=? [F s=5]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
model = stormpy.build_parametric_model(program, formulas)
assert model.nr_states == 613
assert model.nr_transitions == 803
assert model.model_type == stormpy.ModelType.DTMC
assert model.has_parameters
initial_state = model.initial_states[0]
assert initial_state == 0
result = stormpy.model_checking(model, formulas[0])
func = result.at(initial_state)
one = stormpy.FactorizedPolynomial(stormpy.RationalRF(1))
assert func.denominator == one
def test_parametric_model_checking_dd(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "parametric_die.pm"))
prop = "P=? [F s=5]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
model = stormpy.build_symbolic_parametric_model(program, formulas)
assert model.nr_states == 11
assert model.nr_transitions == 17
assert model.model_type == stormpy.ModelType.DTMC
assert model.has_parameters
result = stormpy.check_model_dd(model, formulas[0])
assert type(result) is stormpy.SymbolicParametricQuantitativeCheckResult
def test_parametric_model_checking_hybrid(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "parametric_die.pm"))
prop = "P=? [F s=5]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
model = stormpy.build_symbolic_parametric_model(program, formulas)
assert model.nr_states == 11
assert model.nr_transitions == 17
assert model.model_type == stormpy.ModelType.DTMC
assert model.has_parameters
result = stormpy.check_model_hybrid(model, formulas[0])
assert type(result) is stormpy.HybridParametricQuantitativeCheckResult
values = result.get_values()
assert len(values) == 3
def test_parameters(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
formulas = stormpy.parse_properties_for_prism_program("P=? [F s=5]", program)
model = stormpy.build_parametric_model(program, formulas)
model_parameters = model.collect_probability_parameters()
reward_parameters = model.collect_reward_parameters()
all_parameters = model.collect_all_parameters()
assert len(model_parameters) == 2
assert len(reward_parameters) == 0
assert len(all_parameters) == 2
program_reward = stormpy.parse_prism_program(get_example_path("pdtmc", "brp_rewards16_2.pm"))
formulas_reward = stormpy.parse_properties_for_prism_program("Rmin=? [ F \"target\" ]", program_reward)
model = stormpy.build_parametric_model(program_reward, formulas_reward)
model_parameters = model.collect_probability_parameters()
reward_parameters = model.collect_reward_parameters()
all_parameters = model.collect_all_parameters()
assert len(model_parameters) == 2
assert len(reward_parameters) == 2
assert len(all_parameters) == 4
model = stormpy.build_symbolic_parametric_model(program, formulas)
assert len(model.get_parameters()) == 4
model = stormpy.build_symbolic_parametric_model(program_reward, formulas_reward)
assert len(model.get_parameters()) == 4
def test_constraints_collector(self):
from pycarl.formula import FormulaType, Relation
if stormpy.info.storm_ratfunc_use_cln():
import pycarl.cln.formula
else:
import pycarl.gmp.formula
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
prop = "P=? [F s=5]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
model = stormpy.build_parametric_model(program, formulas)
collector = stormpy.ConstraintCollector(model)
constraints_well_formed = collector.wellformed_constraints
for formula in constraints_well_formed:
assert formula.type == FormulaType.CONSTRAINT
constraint = formula.get_constraint()
assert constraint.relation == Relation.LEQ
constraints_graph_preserving = collector.graph_preserving_constraints
for formula in constraints_graph_preserving:
assert formula.type == FormulaType.CONSTRAINT
constraint = formula.get_constraint()
assert constraint.relation == Relation.NEQ
def test_derivatives(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
prop = "P<=0.84 [F s=5 ]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
model = stormpy.build_parametric_model(program, formulas)
assert model.nr_states == 613
assert model.nr_transitions == 803
assert model.model_type == stormpy.ModelType.DTMC
assert model.has_parameters
parameters = model.collect_probability_parameters()
assert len(parameters) == 2
derivatives = stormpy.pars.gather_derivatives(model, list(parameters)[0])
assert len(derivatives) == 0
def test_dtmc_simplification(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
prop = "P<=0.84 [F s=5 ]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
formula = formulas[0].raw_formula
model = stormpy.build_parametric_model(program, formulas)
assert model.nr_states == 613
assert model.nr_transitions == 803
model, formula = stormpy.pars.simplify_model(model, formula)
assert model.nr_states == 193
assert model.nr_transitions == 383
def test_mdp_simplification(self):
program = stormpy.parse_prism_program(get_example_path("pmdp", "two_dice.nm"))
formulas = stormpy.parse_properties_for_prism_program("Pmin=? [ F \"two\" ]", program)
formula = formulas[0].raw_formula
model = stormpy.build_parametric_model(program, formulas)
assert model.nr_states == 169
assert model.nr_transitions == 435
model, formula = stormpy.pars.simplify_model(model, formula)
assert model.nr_states == 17
assert model.nr_transitions == 50
def test_region(self):
program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm"))
prop = "P<=0.84 [F s=5 ]"
formulas = stormpy.parse_properties_for_prism_program(prop, program)
model = stormpy.build_parametric_model(program, formulas)
parameters = model.collect_probability_parameters()
assert len(parameters) == 2
region = stormpy.pars.ParameterRegion.create_from_string("0.7<=pL<=0.9,0.75<=pK<=0.95", parameters)
assert region.area == stormpy.RationalRF(1) / stormpy.RationalRF(25)
for par in parameters:
if par.name == "pL":
pL = par
elif par.name == "pK":
pK = par
else:
assert False
dec = stormpy.RationalRF(100)
region_valuation = {pL: (stormpy.RationalRF(70) / dec, stormpy.RationalRF(90) / dec), pK: (stormpy.RationalRF(75) / dec, stormpy.RationalRF(95) / dec)}
region = stormpy.pars.ParameterRegion(region_valuation)
assert region.area == stormpy.RationalRF(1) / stormpy.RationalRF(25)