/** @file @ingroup cudd @brief Functions for exact variable reordering. @author Cheng Hua, Fabio Somenzi @copyright@parblock Copyright (c) 1995-2015, Regents of the University of Colorado All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @endparblock */ #include "util.h" #include "cuddInt.h" /*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/ /** \cond */ /*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/ static int getMaxBinomial (int n); static DdHalfWord ** getMatrix (int rows, int cols); static void freeMatrix (DdHalfWord **matrix); static int getLevelKeys (DdManager *table, int l); static int ddShuffle (DdManager *table, DdHalfWord *permutation, int lower, int upper); static int ddSiftUp (DdManager *table, int x, int xLow); static int updateUB (DdManager *table, int oldBound, DdHalfWord *bestOrder, int lower, int upper); static int ddCountRoots (DdManager *table, int lower, int upper); static void ddClearGlobal (DdManager *table, int lower, int maxlevel); static int computeLB (DdManager *table, DdHalfWord *order, int roots, int cost, int lower, int upper, int level); static int updateEntry (DdManager *table, DdHalfWord *order, int level, int cost, DdHalfWord **orders, int *costs, int subsets, char *mask, int lower, int upper); static void pushDown (DdHalfWord *order, int j, int level); static DdHalfWord * initSymmInfo (DdManager *table, int lower, int upper); static int checkSymmInfo (DdManager *table, DdHalfWord *symmInfo, int index, int level); /** \endcond */ /*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/ /** @brief Exact variable ordering algorithm. @details Finds an optimum order for the variables between lower and upper. @return 1 if successful; 0 otherwise. @sideeffect None */ int cuddExact( DdManager * table, int lower, int upper) { int k, i, j; int maxBinomial, oldSubsets, newSubsets; int subsetCost; int size; /* number of variables to be reordered */ int unused, nvars, level, result; int upperBound, lowerBound, cost; int roots; char *mask = NULL; DdHalfWord *symmInfo = NULL; DdHalfWord **newOrder = NULL; DdHalfWord **oldOrder = NULL; int *newCost = NULL; int *oldCost = NULL; DdHalfWord **tmpOrder; int *tmpCost; DdHalfWord *bestOrder = NULL; DdHalfWord *order; #ifdef DD_STATS int ddTotalSubsets; #endif /* Restrict the range to be reordered by excluding unused variables ** at the two ends. */ while (table->subtables[lower].keys == 1 && table->vars[table->invperm[lower]]->ref == 1 && lower < upper) lower++; while (table->subtables[upper].keys == 1 && table->vars[table->invperm[upper]]->ref == 1 && lower < upper) upper--; if (lower == upper) return(1); /* trivial problem */ /* Apply symmetric sifting to get a good upper bound and to extract ** symmetry information. */ result = cuddSymmSiftingConv(table,lower,upper); if (result == 0) goto cuddExactOutOfMem; #ifdef DD_STATS (void) fprintf(table->out,"\n"); table->totalShuffles = 0; ddTotalSubsets = 0; #endif /* Initialization. */ nvars = table->size; size = upper - lower + 1; /* Count unused variable among those to be reordered. This is only ** used to compute maxBinomial. */ unused = 0; for (i = lower + 1; i < upper; i++) { if (table->subtables[i].keys == 1 && table->vars[table->invperm[i]]->ref == 1) unused++; } /* Find the maximum number of subsets we may have to store. */ maxBinomial = getMaxBinomial(size - unused); if (maxBinomial == -1) goto cuddExactOutOfMem; newOrder = getMatrix(maxBinomial, size); if (newOrder == NULL) goto cuddExactOutOfMem; newCost = ALLOC(int, maxBinomial); if (newCost == NULL) goto cuddExactOutOfMem; oldOrder = getMatrix(maxBinomial, size); if (oldOrder == NULL) goto cuddExactOutOfMem; oldCost = ALLOC(int, maxBinomial); if (oldCost == NULL) goto cuddExactOutOfMem; bestOrder = ALLOC(DdHalfWord, size); if (bestOrder == NULL) goto cuddExactOutOfMem; mask = ALLOC(char, nvars); if (mask == NULL) goto cuddExactOutOfMem; symmInfo = initSymmInfo(table, lower, upper); if (symmInfo == NULL) goto cuddExactOutOfMem; roots = ddCountRoots(table, lower, upper); /* Initialize the old order matrix for the empty subset and the best ** order to the current order. The cost for the empty subset includes ** the cost of the levels between upper and the constants. These levels ** are not going to change. Hence, we count them only once. */ oldSubsets = 1; for (i = 0; i < size; i++) { oldOrder[0][i] = bestOrder[i] = (DdHalfWord) table->invperm[i+lower]; } subsetCost = (int) table->constants.keys; for (i = upper + 1; i < nvars; i++) subsetCost += getLevelKeys(table,i); oldCost[0] = subsetCost; /* The upper bound is initialized to the current size of the BDDs. */ upperBound = (int) (table->keys - table->isolated); /* Now consider subsets of increasing size. */ for (k = 1; k <= size; k++) { #ifdef DD_STATS (void) fprintf(table->out,"Processing subsets of size %d\n", k); fflush(table->out); #endif newSubsets = 0; level = size - k; /* offset of first bottom variable */ for (i = 0; i < oldSubsets; i++) { /* for each subset of size k-1 */ order = oldOrder[i]; cost = oldCost[i]; lowerBound = computeLB(table, order, roots, cost, lower, upper, level); if (lowerBound >= upperBound) continue; /* Impose new order. */ result = ddShuffle(table, order, lower, upper); if (result == 0) goto cuddExactOutOfMem; upperBound = updateUB(table,upperBound,bestOrder,lower,upper); /* For each top bottom variable. */ for (j = level; j >= 0; j--) { /* Skip unused variables. */ if (table->subtables[j+lower-1].keys == 1 && table->vars[table->invperm[j+lower-1]]->ref == 1) continue; /* Find cost under this order. */ subsetCost = cost + getLevelKeys(table, lower + level); newSubsets = updateEntry(table, order, level, subsetCost, newOrder, newCost, newSubsets, mask, lower, upper); if (j == 0) break; if (checkSymmInfo(table, symmInfo, (int) order[j-1], level) == 0) continue; pushDown(order,j-1,level); /* Impose new order. */ result = ddShuffle(table, order, lower, upper); if (result == 0) goto cuddExactOutOfMem; upperBound = updateUB(table,upperBound,bestOrder,lower,upper); } /* for each bottom variable */ } /* for each subset of size k */ /* New orders become old orders in preparation for next iteration. */ tmpOrder = oldOrder; tmpCost = oldCost; oldOrder = newOrder; oldCost = newCost; newOrder = tmpOrder; newCost = tmpCost; #ifdef DD_STATS ddTotalSubsets += newSubsets; #endif oldSubsets = newSubsets; } result = ddShuffle(table, bestOrder, lower, upper); if (result == 0) goto cuddExactOutOfMem; #ifdef DD_STATS #ifdef DD_VERBOSE (void) fprintf(table->out,"\n"); #endif (void) fprintf(table->out,"#:S_EXACT %8d: total subsets\n", ddTotalSubsets); (void) fprintf(table->out,"#:H_EXACT %8d: total shuffles", table->totalShuffles); #endif freeMatrix(newOrder); freeMatrix(oldOrder); FREE(bestOrder); FREE(oldCost); FREE(newCost); FREE(symmInfo); FREE(mask); return(1); cuddExactOutOfMem: if (newOrder != NULL) freeMatrix(newOrder); if (oldOrder != NULL) freeMatrix(oldOrder); if (bestOrder != NULL) FREE(bestOrder); if (oldCost != NULL) FREE(oldCost); if (newCost != NULL) FREE(newCost); if (symmInfo != NULL) FREE(symmInfo); if (mask != NULL) FREE(mask); table->errorCode = CUDD_MEMORY_OUT; return(0); } /* end of cuddExact */ /** @brief Returns the maximum value of `(n choose k)` for a given `n`. @details Computes the maximum value of `(n choose k)` for a given `n`. The maximum value occurs for `k = n/2` when `n` is even, or `k = (n-1)/2` when `n` is odd. The algorithm used in this procedure avoids intermediate overflow problems. It is based on the identity binomial(n,k) = n/k * binomial(n-1,k-1). @return the computed value if successful; -1 if out of range. @sideeffect None */ static int getMaxBinomial( int n) { double i, j, result; if (n < 0 || n > 33) return(-1); /* error */ if (n < 2) return(1); for (result = (double)((n+3)/2), i = result+1, j=2; i <= n; i++, j++) { result *= i; result /= j; } return((int)result); } /* end of getMaxBinomial */ #if 0 /** @brief Returns the gcd of two integers. @details Uses the binary GCD algorithm described in Cormen, Leiserson, and Rivest. @sideeffect None */ static int gcd( int x, int y) { int a; int b; int lsbMask; /* GCD(n,0) = n. */ if (x == 0) return(y); if (y == 0) return(x); a = x; b = y; lsbMask = 1; /* Here both a and b are != 0. The iteration maintains this invariant. ** Hence, we only need to check for when they become equal. */ while (a != b) { if (a & lsbMask) { if (b & lsbMask) { /* both odd */ if (a < b) { b = (b - a) >> 1; } else { a = (a - b) >> 1; } } else { /* a odd, b even */ b >>= 1; } } else { if (b & lsbMask) { /* a even, b odd */ a >>= 1; } else { /* both even */ lsbMask <<= 1; } } } return(a); } /* end of gcd */ #endif /** @brief Allocates a two-dimensional matrix of ints. @return the pointer to the matrix if successful; NULL otherwise. @sideeffect None @see freeMatrix */ static DdHalfWord ** getMatrix( int rows /* number of rows */, int cols /* number of columns */) { DdHalfWord **matrix; int i; if (cols*rows == 0) return(NULL); matrix = ALLOC(DdHalfWord *, rows); if (matrix == NULL) return(NULL); matrix[0] = ALLOC(DdHalfWord, cols*rows); if (matrix[0] == NULL) { FREE(matrix); return(NULL); } for (i = 1; i < rows; i++) { matrix[i] = matrix[i-1] + cols; } return(matrix); } /* end of getMatrix */ /** @brief Frees a two-dimensional matrix allocated by getMatrix. @sideeffect None @see getMatrix */ static void freeMatrix( DdHalfWord ** matrix) { FREE(matrix[0]); FREE(matrix); return; } /* end of freeMatrix */ /** @brief Returns the number of nodes at one level of a unique table. @details The projection function, if isolated, is not counted. @sideeffect None */ static int getLevelKeys( DdManager * table, int l) { int isolated; int x; /* x is an index */ x = table->invperm[l]; isolated = table->vars[x]->ref == 1; return((int) table->subtables[l].keys - isolated); } /* end of getLevelKeys */ /** @brief Reorders variables according to a given permutation. @details The i-th permutation array contains the index of the variable that should be brought to the i-th level. ddShuffle assumes that no dead nodes are present and that the interaction matrix is properly initialized. The reordering is achieved by a series of upward sifts. @return 1 if successful; 0 otherwise. @sideeffect None */ static int ddShuffle( DdManager * table, DdHalfWord * permutation, int lower, int upper) { DdHalfWord index; int level; int position; #if 0 int numvars; #endif int result; #if defined(DD_STATS) && defined(DD_VERBOSE) int initialSize; int finalSize; #endif #if defined(DD_STATS) && defined(DD_VERBOSE) initialSize = (int) (table->keys - table->isolated); #endif #if 0 numvars = table->size; (void) fprintf(table->out,"%d:", table->totalShuffles); for (level = 0; level < numvars; level++) { (void) fprintf(table->out," %d", table->invperm[level]); } (void) fprintf(table->out,"\n"); #endif for (level = 0; level <= upper - lower; level++) { index = permutation[level]; position = table->perm[index]; result = ddSiftUp(table,position,level+lower); if (!result) return(0); } #ifdef DD_STATS table->totalShuffles++; #ifdef DD_VERBOSE finalSize = (int) (table->keys - table->isolated); if (finalSize < initialSize) { (void) fprintf(table->out,"-"); } else if (finalSize > initialSize) { (void) fprintf(table->out,"+"); } else { (void) fprintf(table->out,"="); } if ((table->totalShuffles & 63) == 0) (void) fprintf(table->out,"\n"); fflush(table->out); #endif #endif return(1); } /* end of ddShuffle */ /** @brief Moves one variable up. @details Takes a variable from position x and sifts it up to position xLow; xLow should be less than or equal to x. @return 1 if successful; 0 otherwise @sideeffect None */ static int ddSiftUp( DdManager * table, int x, int xLow) { int y; int size; y = cuddNextLow(table,x); while (y >= xLow) { size = cuddSwapInPlace(table,y,x); if (size == 0) { return(0); } x = y; y = cuddNextLow(table,x); } return(1); } /* end of ddSiftUp */ /** @brief Updates the upper bound and saves the best order seen so far. @return the current value of the upper bound. @sideeffect None */ static int updateUB( DdManager * table, int oldBound, DdHalfWord * bestOrder, int lower, int upper) { int i; int newBound = (int) (table->keys - table->isolated); if (newBound < oldBound) { #ifdef DD_STATS (void) fprintf(table->out,"New upper bound = %d\n", newBound); fflush(table->out); #endif for (i = lower; i <= upper; i++) bestOrder[i-lower] = (DdHalfWord) table->invperm[i]; return(newBound); } else { return(oldBound); } } /* end of updateUB */ /** @brief Counts the number of roots. @details Counts the number of roots at the levels between lower and upper. The computation is based on breadth-first search. A node is a root if it is not reachable from any previously visited node. (All the nodes at level lower are therefore considered roots.) The roots that are constant nodes are always ignored. The visited flag uses the LSB of the next pointer. @return the root count. @sideeffect None @see ddClearGlobal */ static int ddCountRoots( DdManager * table, int lower, int upper) { int i,j; DdNode *f; DdNodePtr *nodelist; DdNode *sentinel = &(table->sentinel); int slots; int roots = 0; int maxlevel = lower; for (i = lower; i <= upper; i++) { nodelist = table->subtables[i].nodelist; slots = (int) table->subtables[i].slots; for (j = 0; j < slots; j++) { f = nodelist[j]; while (f != sentinel) { /* A node is a root of the DAG if it cannot be ** reached by nodes above it. If a node was never ** reached during the previous depth-first searches, ** then it is a root, and we start a new depth-first ** search from it. */ if (!Cudd_IsComplement(f->next)) { if (f != table->vars[f->index]) { roots++; } } if (!cuddIsConstant(cuddT(f))) { cuddT(f)->next = Cudd_Complement(cuddT(f)->next); if (table->perm[cuddT(f)->index] > maxlevel) maxlevel = table->perm[cuddT(f)->index]; } if (!Cudd_IsConstantInt(cuddE(f))) { Cudd_Regular(cuddE(f))->next = Cudd_Complement(Cudd_Regular(cuddE(f))->next); if (table->perm[Cudd_Regular(cuddE(f))->index] > maxlevel) maxlevel = table->perm[Cudd_Regular(cuddE(f))->index]; } f = Cudd_Regular(f->next); } } } ddClearGlobal(table, lower, maxlevel); return(roots); } /* end of ddCountRoots */ /** @brief Scans the %DD and clears the LSB of the next pointers. @details The LSB of the next pointers are used as markers to tell whether a node was reached. Once the roots are counted, these flags are reset. @sideeffect None @see ddCountRoots */ static void ddClearGlobal( DdManager * table, int lower, int maxlevel) { int i,j; DdNode *f; DdNodePtr *nodelist; DdNode *sentinel = &(table->sentinel); int slots; for (i = lower; i <= maxlevel; i++) { nodelist = table->subtables[i].nodelist; slots = (int) table->subtables[i].slots; for (j = 0; j < slots; j++) { f = nodelist[j]; while (f != sentinel) { f->next = Cudd_Regular(f->next); f = f->next; } } } } /* end of ddClearGlobal */ /** @brief Computes a lower bound on the size of a %BDD. @details The lower bound depends on the following factors: