The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
|
|
/* MISP, Maximum Independent Set Problem */
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
/* Let G = (V,E) be an undirected graph with vertex set V and edge set * E. Vertices u, v in V are non-adjacent if (u,v) not in E. A subset * of the vertices S within V is independent if all vertices in S are * pairwise non-adjacent. The Maximum Independent Set Problem (MISP) is * to find an independent set having the largest cardinality. */
param n, integer, > 0; /* number of vertices */
set V := 1..n; /* set of vertices */
set E within V cross V; /* set of edges */
var x{i in V}, binary; /* x[i] = 1 means vertex i belongs to independent set */
s.t. edge{(i,j) in E}: x[i] + x[j] <= 1; /* if there is edge (i,j), vertices i and j cannot belong to the same independent set */
maximize obj: sum{i in V} x[i]; /* the objective is to maximize the cardinality of independent set */
data;
/* These data corresponds to the test instance from: * * M.G.C. Resende, T.A.Feo, S.H.Smith, "Algorithm 787 -- FORTRAN * subroutines for approximate solution of the maximum independent set * problem using GRASP," Trans. on Math. Softw., Vol. 24, No. 4, * December 1998, pp. 386-394. */
/* The optimal solution is 7. */
param n := 50;
set E := 1 2 1 3 1 5 1 7 1 8 1 12 1 15 1 16 1 19 1 20 1 21 1 22 1 28 1 30 1 34 1 35 1 37 1 41 1 42 1 47 1 50 2 3 2 5 2 6 2 7 2 8 2 9 2 10 2 13 2 17 2 19 2 20 2 21 2 23 2 25 2 26 2 29 2 31 2 35 2 36 2 44 2 45 2 46 2 50 3 5 3 6 3 8 3 9 3 10 3 11 3 14 3 16 3 23 3 24 3 26 3 27 3 28 3 29 3 30 3 31 3 34 3 35 3 36 3 39 3 41 3 42 3 43 3 44 3 50 4 6 4 7 4 9 4 10 4 11 4 13 4 14 4 15 4 17 4 21 4 22 4 23 4 24 4 25 4 27 4 28 4 30 4 31 4 33 4 34 4 35 4 36 4 37 4 38 4 40 4 41 4 42 4 46 4 49 5 6 5 11 5 14 5 21 5 24 5 25 5 28 5 35 5 38 5 39 5 41 5 44 5 49 5 50 6 8 6 9 6 10 6 13 6 14 6 16 6 17 6 19 6 22 6 23 6 26 6 27 6 30 6 34 6 35 6 38 6 39 6 40 6 41 6 44 6 45 6 47 6 50 7 8 7 9 7 10 7 11 7 13 7 15 7 16 7 18 7 20 7 22 7 23 7 24 7 25 7 33 7 35 7 36 7 38 7 43 7 45 7 46 7 47 8 10 8 11 8 13 8 16 8 17 8 18 8 19 8 20 8 21 8 22 8 23 8 24 8 25 8 26 8 33 8 35 8 36 8 39 8 42 8 44 8 48 8 49 9 12 9 14 9 17 9 19 9 20 9 23 9 28 9 30 9 31 9 32 9 33 9 34 9 38 9 39 9 42 9 44 9 45 9 46 10 11 10 13 10 15 10 16 10 17 10 20 10 21 10 22 10 23 10 25 10 26 10 27 10 28 10 30 10 31 10 32 10 37 10 38 10 41 10 43 10 44 10 45 10 50 11 12 11 14 11 15 11 18 11 21 11 24 11 25 11 26 11 29 11 32 11 33 11 35 11 36 11 37 11 39 11 40 11 42 11 43 11 45 11 47 11 49 11 50 12 13 12 16 12 17 12 19 12 24 12 25 12 26 12 30 12 31 12 32 12 34 12 36 12 37 12 39 12 41 12 44 12 47 12 48 12 49 13 15 13 16 13 18 13 19 13 20 13 22 13 23 13 24 13 27 13 28 13 29 13 31 13 33 13 35 13 36 13 37 13 44 13 47 13 49 13 50 14 15 14 16 14 17 14 18 14 19 14 20 14 21 14 26 14 28 14 29 14 30 14 31 14 32 14 34 14 35 14 36 14 38 14 39 14 41 14 44 14 46 14 47 14 48 15 18 15 21 15 22 15 23 15 25 15 28 15 29 15 30 15 33 15 34 15 36 15 37 15 38 15 39 15 40 15 43 15 44 15 46 15 50 16 17 16 19 16 20 16 25 16 26 16 29 16 35 16 38 16 39 16 40 16 41 16 42 16 44 17 18 17 19 17 21 17 22 17 23 17 25 17 26 17 28 17 29 17 33 17 37 17 44 17 45 17 48 18 20 18 24 18 27 18 28 18 31 18 32 18 34 18 35 18 36 18 37 18 38 18 45 18 48 18 49 18 50 19 22 19 24 19 28 19 29 19 36 19 37 19 39 19 41 19 43 19 45 19 48 19 49 20 21 20 22 20 24 20 25 20 26 20 27 20 29 20 30 20 31 20 33 20 34 20 35 20 38 20 39 20 41 20 42 20 43 20 44 20 45 20 46 20 48 20 49 21 22 21 23 21 29 21 31 21 35 21 38 21 42 21 46 21 47 22 23 22 26 22 27 22 28 22 29 22 30 22 39 22 40 22 41 22 42 22 44 22 45 22 46 22 47 22 49 22 50 23 28 23 31 23 32 23 33 23 34 23 35 23 36 23 39 23 40 23 41 23 42 23 44 23 45 23 48 23 49 23 50 24 25 24 27 24 29 24 30 24 31 24 33 24 34 24 38 24 42 24 43 24 44 24 49 24 50 25 26 25 27 25 29 25 30 25 33 25 34 25 36 25 38 25 40 25 41 25 42 25 44 25 46 25 47 25 48 25 49 26 28 26 31 26 32 26 33 26 37 26 38 26 39 26 40 26 41 26 42 26 45 26 47 26 48 26 49 27 29 27 30 27 33 27 34 27 35 27 39 27 40 27 46 27 48 28 29 28 37 28 40 28 42 28 44 28 46 28 47 28 50 29 35 29 38 29 39 29 41 29 42 29 48 30 31 30 32 30 35 30 37 30 38 30 40 30 43 30 45 30 46 30 47 30 48 31 33 31 35 31 38 31 40 31 41 31 42 31 44 31 46 31 47 31 50 32 33 32 35 32 39 32 40 32 46 32 49 32 50 33 34 33 36 33 37 33 40 33 42 33 43 33 44 33 45 33 50 34 35 34 36 34 37 34 38 34 40 34 43 34 44 34 49 34 50 35 36 35 38 35 41 35 42 35 43 35 45 35 46 35 47 35 49 35 50 36 37 36 39 36 40 36 41 36 42 36 43 36 48 36 50 37 38 37 41 37 43 37 46 37 47 37 48 37 49 37 50 38 41 38 45 38 46 38 48 38 49 38 50 39 43 39 46 39 47 39 48 39 49 40 43 40 45 40 48 40 50 41 42 41 43 41 44 41 45 41 46 41 48 41 49 42 43 42 44 42 46 42 48 42 49 43 45 43 46 43 48 43 50 44 45 44 48 45 46 45 47 45 48 46 49 47 49 47 50 48 49 48 50 49 50 ;
end;
|