The source code and dockerfile for the GSW2024 AI Lab.
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
|
|
import stormpy import stormpy.core import stormpy.simulator
import stormpy.examples import stormpy.examples.files import random
"""
Simulator for nondeterministic models """
def example_simulator_02(): path = stormpy.examples.files.prism_mdp_maze prism_program = stormpy.parse_prism_program(path)
model = stormpy.build_model(prism_program) simulator = stormpy.simulator.create_simulator(model, seed=42) # 5 paths of at most 20 steps. paths = [] for m in range(5): path = [] state, reward = simulator.restart() path = [f"{state}"] for n in range(20): actions = simulator.available_actions() select_action = random.randint(0,len(actions)-1) #print(f"Randomly select action nr: {select_action} from actions {actions}") path.append(f"--act={actions[select_action]}-->") state, reward = simulator.step(actions[select_action]) #print(state) path.append(f"{state}") if simulator.is_done(): #print("Trapped!") break paths.append(path) for path in paths: print(" ".join(path))
options = stormpy.BuilderOptions() options.set_build_state_valuations() options.set_build_choice_labels(True) model = stormpy.build_sparse_model_with_options(prism_program, options) print(model) simulator = stormpy.simulator.create_simulator(model, seed=42) simulator.set_observation_mode(stormpy.simulator.SimulatorObservationMode.PROGRAM_LEVEL) simulator.set_action_mode(stormpy.simulator.SimulatorActionMode.GLOBAL_NAMES) # 5 paths of at most 20 steps. paths = [] for m in range(5): path = [] state, reward = simulator.restart() path = [f"{state}"] for n in range(20): actions = simulator.available_actions() select_action = random.randint(0,len(actions)-1) #print(f"Randomly select action nr: {select_action} from actions {actions}") path.append(f"--act={actions[select_action]}-->") state, reward = simulator.step(actions[select_action]) #print(state) path.append(f"{state}") if simulator.is_done(): #print("Trapped!") break paths.append(path) for path in paths: print(" ".join(path))
if __name__ == '__main__': example_simulator_02()
|