|
|
/* * Author: Heinrich Schuchardt <xypron.glpk@gmx.de> * * This model solves a clustering problem: * * Out of 50 towns select 3 to be cluster centers and assign the other * towns to the clusters such that the sum of the population weighted * euclidian distances between towns and centers is minimized. * * The solution is saved as a scalable vector graphic file with a * pseudo-random file name. */
# Output file param fn, symbolic := "00000" & 100000 * Uniform01(); param f, symbolic := "ct" & substr(fn, length(fn) - 4) & ".svg";
# Centers param nc := 3; set C := {1 .. nc};
# Towns param nt := 50; set T := {1 .. nt}; param xt{T} := Uniform01(); param yt{T} := Uniform01(); param pt{T} := ceil(1000 * Uniform01());
# Image size param scale := 1000;
# Colors # saturation [0, 255] param sat := 192; param hue{c in C} := 6 * (c - 1) / nc; param red{c in C} := if hue[c] <= 1 or hue[c] >= 5 then 255 else (if hue[c] >=2 and hue[c] <= 4 then 255 - sat else (if hue[c] <=2 then 255 - sat + sat * (2-hue[c]) else 255 - sat + sat * (hue[c]-4) )); param green{c in C} := if hue[c] >= 1 and hue[c] <= 3 then 255 else (if hue[c] >= 4 then 255 - sat else (if hue[c] <=1 then 255 - sat + sat * hue[c] else 255 - sat + sat * (4-hue[c]) )); param blue{c in C} := if hue[c] >= 3 and hue[c] <= 5 then 255 else (if hue[c] <=2 then 255 - sat else (if hue[c] <=3 then 255 - sat + sat * (hue[c]-2) else 255 - sat + sat * (6-hue[c]) ));
var x{T}; var y{T,T}, binary;
minimize obj : sum{c in T, t in T} y[c,t] * pt[t] * sqrt((xt[c] - xt[t])^2 + (yt[c] - yt[t])^2);
s.t. sumx : sum{c in T} x[c] = nc; s.t. cxy{c in T, t in T} : y[c,t] <= x[c]; s.t. sumy{t in T} : sum{c in T} y[c,t] = 1;
solve;
for {c in T : x[c] > .5} { printf "Center %5.4f %5.4f\n", xt[c], yt[c]; for {t in T : y[c,t] > .5} { printf " Town %5.4f %5.4f (%5.0f)\n", xt[t], yt[t], pt[t]; } }
# Output the solution as scalable vector graphic
# header printf "<?xml version=""1.0"" standalone=""no""?>\n" > f; printf "<!DOCTYPE svg PUBLIC ""-//W3C//DTD SVG 1.1//EN"" \n" >> f; printf """http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"">\n" >> f; printf "<svg width=""%d"" height=""%d"" version=""1.0"" \n", 1.2 * scale, 1.2 * scale >> f; printf "xmlns=""http://www.w3.org/2000/svg"">\n" >> f;
# background printf "<rect x=""0"" y=""0"" width=""%d"" height=""%d""" & " stroke=""none"" fill=""white""/>\n", 1.2 * scale, 1.2 * scale>> f;
# border printf "<rect x=""%d"" y=""%d"" width=""%d"" height=""%d""" & " stroke=""black"" stroke-width="".5"" fill=""white""/>\n", .1 * scale, .1 * scale, scale, scale >> f;
# circles for towns for {t in T} printf {s in T, c in C : y[s,t] > .5 && c = floor( .5 + sum{u in T : u <= s} x[u])} "<circle cx=""%f"" cy=""%f"" r=""%f"" stroke=""black"" " & "stroke-width=""1"" fill=""rgb(%d,%d,%d)""/>\n", (.1 + xt[t]) * scale, (.1 + yt[t]) * scale, .001 * sqrt(pt[t]) * scale, red[c], green[c] , blue[c] >> f;
# lines from towns to assigned centers for {t in T, c in T : y[c,t] > .5} printf "<line x1=""%f"" y1=""%f"" x2=""%f"" y2=""%f""" & " style=""stroke:black;stroke-width:.5""/>\n", (.1 + xt[c]) * scale, (.1 + yt[c]) * scale, (.1 + xt[t]) * scale, (.1 + yt[t]) * scale >> f;
printf "</svg>\n" >> f;
end;
|