|
|
/**
@file
@ingroup cudd
@brief Functions for %ZDD group sifting.
@author Fabio Somenzi
@copyright@parblock Copyright (c) 1995-2015, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @endparblock
*/
#include "util.h"
#include "mtrInt.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Stucture declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/
/** \cond */
/*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/
static int zddTreeSiftingAux (DdManager *table, MtrNode *treenode, Cudd_ReorderingType method); #ifdef DD_STATS
static int zddCountInternalMtrNodes (DdManager *table, MtrNode *treenode); #endif
static int zddReorderChildren (DdManager *table, MtrNode *treenode, Cudd_ReorderingType method); static void zddFindNodeHiLo (DdManager *table, MtrNode *treenode, int *lower, int *upper); static int zddUniqueCompareGroup (void const *ptrX, void const *ptrY); static int zddGroupSifting (DdManager *table, int lower, int upper); static int zddGroupSiftingAux (DdManager *table, int x, int xLow, int xHigh); static int zddGroupSiftingUp (DdManager *table, int y, int xLow, Move **moves); static int zddGroupSiftingDown (DdManager *table, int x, int xHigh, Move **moves); static int zddGroupMove (DdManager *table, int x, int y, Move **moves); static int zddGroupMoveBackward (DdManager *table, int x, int y); static int zddGroupSiftingBackward (DdManager *table, Move *moves, int size); static void zddMergeGroups (DdManager *table, MtrNode *treenode, int low, int high);
/** \endcond */
/*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/
/**
@brief Creates a new %ZDD variable group.
@details The group starts at variable and contains size variables. The parameter low is the index of the first variable. If the variable already exists, its current position in the order is known to the manager. If the variable does not exist yet, the position is assumed to be the same as the index. The group tree is created if it does not exist yet.
@return a pointer to the group if successful; NULL otherwise.
@sideeffect The %ZDD variable tree is changed.
@see Cudd_MakeTreeNode
*/ MtrNode * Cudd_MakeZddTreeNode( DdManager * dd /**< manager */, unsigned int low /**< index of the first group variable */, unsigned int size /**< number of variables in the group */, unsigned int type /**< MTR_DEFAULT or MTR_FIXED */) { MtrNode *group; MtrNode *tree; unsigned int level;
/* If the variable does not exist yet, the position is assumed to be
** the same as the index. Therefore, applications that rely on ** Cudd_bddNewVarAtLevel or Cudd_addNewVarAtLevel to create new ** variables have to create the variables before they group them. */ level = (low < (unsigned int) dd->sizeZ) ? (unsigned int) dd->permZ[low] : low;
if (level + size - 1> (int) MTR_MAXHIGH) return(NULL);
/* If the tree does not exist yet, create it. */ tree = dd->treeZ; if (tree == NULL) { dd->treeZ = tree = Mtr_InitGroupTree(0, dd->sizeZ); if (tree == NULL) return(NULL); tree->index = dd->invpermZ[0]; }
/* Extend the upper bound of the tree if necessary. This allows the
** application to create groups even before the variables are created. */ tree->size = ddMax(tree->size, level + size);
/* Create the group. */ group = Mtr_MakeGroup(tree, level, size, type); if (group == NULL) return(NULL);
/* Initialize the index field to the index of the variable currently
** in position low. This field will be updated by the reordering ** procedure to provide a handle to the group once it has been moved. */ group->index = (MtrHalfWord) low;
return(group);
} /* end of Cudd_MakeZddTreeNode */
/*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/
/**
@brief Tree sifting algorithm for %ZDDs.
@details Assumes that a tree representing a group hierarchy is passed as a parameter. It then reorders each group in postorder fashion by calling zddTreeSiftingAux. Assumes that no dead nodes are present.
@return 1 if successful; 0 otherwise.
@sideeffect None
*/ int cuddZddTreeSifting( DdManager * table /**< %DD table */, Cudd_ReorderingType method /**< reordering method for the groups of leaves */) { int i; int nvars; int result; int tempTree;
/* If no tree is provided we create a temporary one in which all
** variables are in a single group. After reordering this tree is ** destroyed. */ tempTree = table->treeZ == NULL; if (tempTree) { table->treeZ = Mtr_InitGroupTree(0,table->sizeZ); table->treeZ->index = table->invpermZ[0]; } nvars = table->sizeZ;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0 && !tempTree) (void) fprintf(table->out,"cuddZddTreeSifting:"); Mtr_PrintGroups(table->treeZ,table->enableExtraDebug <= 0); #endif
#if 0
/* Debugging code. */ if (table->tree && table->treeZ) { (void) fprintf(table->out,"\n"); Mtr_PrintGroups(table->tree, 0); cuddPrintVarGroups(table,table->tree,0,0); for (i = 0; i < table->size; i++) { (void) fprintf(table->out,"%s%d", (i == 0) ? "" : ",", table->invperm[i]); } (void) fprintf(table->out,"\n"); for (i = 0; i < table->size; i++) { (void) fprintf(table->out,"%s%d", (i == 0) ? "" : ",", table->perm[i]); } (void) fprintf(table->out,"\n\n"); Mtr_PrintGroups(table->treeZ,0); cuddPrintVarGroups(table,table->treeZ,1,0); for (i = 0; i < table->sizeZ; i++) { (void) fprintf(table->out,"%s%d", (i == 0) ? "" : ",", table->invpermZ[i]); } (void) fprintf(table->out,"\n"); for (i = 0; i < table->sizeZ; i++) { (void) fprintf(table->out,"%s%d", (i == 0) ? "" : ",", table->permZ[i]); } (void) fprintf(table->out,"\n"); } /* End of debugging code. */ #endif
#ifdef DD_STATS
table->extsymmcalls = 0; table->extsymm = 0; table->secdiffcalls = 0; table->secdiff = 0; table->secdiffmisfire = 0;
(void) fprintf(table->out,"\n"); if (!tempTree) (void) fprintf(table->out,"#:IM_NODES %8d: group tree nodes\n", zddCountInternalMtrNodes(table,table->treeZ)); #endif
/* Initialize the group of each subtable to itself. Initially
** there are no groups. Groups are created according to the tree ** structure in postorder fashion. */ for (i = 0; i < nvars; i++) table->subtableZ[i].next = i;
/* Reorder. */ result = zddTreeSiftingAux(table, table->treeZ, method);
#ifdef DD_STATS /* print stats */
if (!tempTree && method == CUDD_REORDER_GROUP_SIFT && (table->groupcheck == CUDD_GROUP_CHECK7 || table->groupcheck == CUDD_GROUP_CHECK5)) { (void) fprintf(table->out,"\nextsymmcalls = %d\n",table->extsymmcalls); (void) fprintf(table->out,"extsymm = %d",table->extsymm); } if (!tempTree && method == CUDD_REORDER_GROUP_SIFT && table->groupcheck == CUDD_GROUP_CHECK7) { (void) fprintf(table->out,"\nsecdiffcalls = %d\n",table->secdiffcalls); (void) fprintf(table->out,"secdiff = %d\n",table->secdiff); (void) fprintf(table->out,"secdiffmisfire = %d",table->secdiffmisfire); } #endif
if (tempTree) Cudd_FreeZddTree(table); return(result);
} /* end of cuddZddTreeSifting */
/*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/
/**
@brief Visits the group tree and reorders each group.
@details Recursively visits the group tree and reorders each group in postorder fashion.
@return 1 if successful; 0 otherwise.
@sideeffect None
*/ static int zddTreeSiftingAux( DdManager * table, MtrNode * treenode, Cudd_ReorderingType method) { MtrNode *auxnode; int res;
#ifdef DD_DEBUG
Mtr_PrintGroups(treenode,1); #endif
auxnode = treenode; while (auxnode != NULL) { if (auxnode->child != NULL) { if (!zddTreeSiftingAux(table, auxnode->child, method)) return(0); res = zddReorderChildren(table, auxnode, CUDD_REORDER_GROUP_SIFT); if (res == 0) return(0); } else if (auxnode->size > 1) { if (!zddReorderChildren(table, auxnode, method)) return(0); } auxnode = auxnode->younger; }
return(1);
} /* end of zddTreeSiftingAux */
#ifdef DD_STATS
/**
@brief Counts the number of internal nodes of the group tree.
@return the count.
@sideeffect None
*/ static int zddCountInternalMtrNodes( DdManager * table, MtrNode * treenode) { MtrNode *auxnode; int count,nodeCount;
nodeCount = 0; auxnode = treenode; while (auxnode != NULL) { if (!(MTR_TEST(auxnode,MTR_TERMINAL))) { nodeCount++; count = zddCountInternalMtrNodes(table,auxnode->child); nodeCount += count; } auxnode = auxnode->younger; }
return(nodeCount);
} /* end of zddCountInternalMtrNodes */ #endif
/**
@brief Reorders the children of a group tree node according to the options.
@details After reordering puts all the variables in the group and/or its descendents in a single group. This allows hierarchical reordering. If the variables in the group do not exist yet, simply does nothing.
@return 1 if successful; 0 otherwise.
@sideeffect None
*/ static int zddReorderChildren( DdManager * table, MtrNode * treenode, Cudd_ReorderingType method) { int lower; int upper = 0; int result; unsigned int initialSize;
zddFindNodeHiLo(table,treenode,&lower,&upper); /* If upper == -1 these variables do not exist yet. */ if (upper == -1) return(1);
if (treenode->flags == MTR_FIXED) { result = 1; } else { #ifdef DD_STATS
(void) fprintf(table->out," "); #endif
switch (method) { case CUDD_REORDER_RANDOM: case CUDD_REORDER_RANDOM_PIVOT: result = cuddZddSwapping(table,lower,upper,method); break; case CUDD_REORDER_SIFT: result = cuddZddSifting(table,lower,upper); break; case CUDD_REORDER_SIFT_CONVERGE: do { initialSize = table->keysZ; result = cuddZddSifting(table,lower,upper); if (initialSize <= table->keysZ) break; #ifdef DD_STATS
else (void) fprintf(table->out,"\n"); #endif
} while (result != 0); break; case CUDD_REORDER_SYMM_SIFT: result = cuddZddSymmSifting(table,lower,upper); break; case CUDD_REORDER_SYMM_SIFT_CONV: result = cuddZddSymmSiftingConv(table,lower,upper); break; case CUDD_REORDER_GROUP_SIFT: result = zddGroupSifting(table,lower,upper); break; case CUDD_REORDER_GROUP_SIFT_CONV: do { initialSize = table->keysZ; result = zddGroupSifting(table,lower,upper); if (initialSize <= table->keysZ) break; } while (result != 0); break; case CUDD_REORDER_LINEAR: result = cuddZddLinearSifting(table,lower,upper); break; case CUDD_REORDER_LINEAR_CONVERGE: do { initialSize = table->keysZ; result = cuddZddLinearSifting(table,lower,upper); if (initialSize <= table->keysZ) break; #ifdef DD_STATS
else (void) fprintf(table->out,"\n"); #endif
} while (result != 0); break; default: return(0); } }
/* Create a single group for all the variables that were sifted,
** so that they will be treated as a single block by successive ** invocations of zddGroupSifting. */ zddMergeGroups(table,treenode,lower,upper);
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out,"zddReorderChildren:"); #endif
return(result);
} /* end of zddReorderChildren */
/**
@brief Finds the lower and upper bounds of the group represented by treenode.
@details The high and low fields of treenode are indices. From those we need to derive the current positions, and find maximum and minimum.
@sideeffect The bounds are returned as side effects.
*/ static void zddFindNodeHiLo( DdManager * table, MtrNode * treenode, int * lower, int * upper) { int low; int high;
/* Check whether no variables in this group already exist.
** If so, return immediately. The calling procedure will know from ** the values of upper that no reordering is needed. */ if ((int) treenode->low >= table->sizeZ) { *lower = table->sizeZ; *upper = -1; return; }
*lower = low = (unsigned int) table->permZ[treenode->index]; high = (int) (low + treenode->size - 1);
if (high >= table->sizeZ) { /* This is the case of a partially existing group. The aim is to
** reorder as many variables as safely possible. If the tree ** node is terminal, we just reorder the subset of the group ** that is currently in existence. If the group has ** subgroups, then we only reorder those subgroups that are ** fully instantiated. This way we avoid breaking up a group. */ MtrNode *auxnode = treenode->child; if (auxnode == NULL) { *upper = (unsigned int) table->sizeZ - 1; } else { /* Search the subgroup that strands the table->sizeZ line.
** If the first group starts at 0 and goes past table->sizeZ ** upper will get -1, thus correctly signaling that no reordering ** should take place. */ while (auxnode != NULL) { int thisLower = table->permZ[auxnode->low]; int thisUpper = thisLower + auxnode->size - 1; if (thisUpper >= table->sizeZ && thisLower < table->sizeZ) *upper = (unsigned int) thisLower - 1; auxnode = auxnode->younger; } } } else { /* Normal case: All the variables of the group exist. */ *upper = (unsigned int) high; }
#ifdef DD_DEBUG
/* Make sure that all variables in group are contiguous. */ assert(treenode->size >= (MtrHalfWord) (*upper - *lower + 1)); #endif
return;
} /* end of zddFindNodeHiLo */
/**
@brief Comparison function used by qsort.
@details Comparison function used by qsort to order the variables according to the number of keys in the subtables.
@return the difference in number of keys between the two variables being compared.
@sideeffect None
*/ static int zddUniqueCompareGroup( void const * ptrX, void const * ptrY) { IndexKey const * pX = (IndexKey const *) ptrX; IndexKey const * pY = (IndexKey const *) ptrY; #if 0
if (pY->keys == pX->keys) { return(pX->index - pY->index); } #endif
return(pY->keys - pX->keys);
} /* end of zddUniqueCompareGroup */
/**
@brief Sifts from treenode->low to treenode->high.
@details If croupcheck == CUDD_GROUP_CHECK7, it checks for group creation at the end of the initial sifting. If a group is created, it is then sifted again. After sifting one variable, the group that contains it is dissolved.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupSifting( DdManager * table, int lower, int upper) { IndexKey *var; int i,j,x,xInit; int nvars; int classes; int result; int *sifted; #ifdef DD_STATS
unsigned previousSize; #endif
int xindex;
nvars = table->sizeZ;
/* Order variables to sift. */ sifted = NULL; var = ALLOC(IndexKey,nvars); if (var == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto zddGroupSiftingOutOfMem; } sifted = ALLOC(int,nvars); if (sifted == NULL) { table->errorCode = CUDD_MEMORY_OUT; goto zddGroupSiftingOutOfMem; }
/* Here we consider only one representative for each group. */ for (i = 0, classes = 0; i < nvars; i++) { sifted[i] = 0; x = table->permZ[i]; if ((unsigned) x >= table->subtableZ[x].next) { var[classes].index = i; var[classes].keys = table->subtableZ[x].keys; classes++; } }
util_qsort(var,classes,sizeof(IndexKey),zddUniqueCompareGroup);
/* Now sift. */ for (i = 0; i < ddMin(table->siftMaxVar,classes); i++) { if (table->zddTotalNumberSwapping >= table->siftMaxSwap) break; if (util_cpu_time() - table->startTime > table->timeLimit) { table->autoDynZ = 0; /* prevent further reordering */ break; } if (table->terminationCallback != NULL && table->terminationCallback(table->tcbArg)) { table->autoDynZ = 0; /* prevent further reordering */ break; } xindex = var[i].index; if (sifted[xindex] == 1) /* variable already sifted as part of group */ continue; x = table->permZ[xindex]; /* find current level of this variable */ if (x < lower || x > upper) continue; #ifdef DD_STATS
previousSize = table->keysZ; #endif
#ifdef DD_DEBUG
/* x is bottom of group */ assert((unsigned) x >= table->subtableZ[x].next); #endif
result = zddGroupSiftingAux(table,x,lower,upper); if (!result) goto zddGroupSiftingOutOfMem;
#ifdef DD_STATS
if (table->keysZ < previousSize) { (void) fprintf(table->out,"-"); } else if (table->keysZ > previousSize) { (void) fprintf(table->out,"+"); } else { (void) fprintf(table->out,"="); } fflush(table->out); #endif
/* Mark variables in the group just sifted. */ x = table->permZ[xindex]; if ((unsigned) x != table->subtableZ[x].next) { xInit = x; do { j = table->invpermZ[x]; sifted[j] = 1; x = table->subtableZ[x].next; } while (x != xInit); }
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out,"zddGroupSifting:"); #endif
} /* for */
FREE(sifted); FREE(var);
return(1);
zddGroupSiftingOutOfMem: if (var != NULL) FREE(var); if (sifted != NULL) FREE(sifted);
return(0);
} /* end of zddGroupSifting */
/**
@brief Sifts one variable up and down until it has taken all positions. Checks for aggregation.
@details There may be at most two sweeps, even if the group grows. Assumes that x is either an isolated variable, or it is the bottom of a group. All groups may not have been found. The variable being moved is returned to the best position seen during sifting.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupSiftingAux( DdManager * table, int x, int xLow, int xHigh) { Move *move; Move *moves; /* list of moves */ int initialSize; int result;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out, "zddGroupSiftingAux from %d to %d\n",xLow,xHigh); assert((unsigned) x >= table->subtableZ[x].next); /* x is bottom of group */ #endif
initialSize = table->keysZ; moves = NULL;
if (x == xLow) { /* Sift down */ #ifdef DD_DEBUG
/* x must be a singleton */ assert((unsigned) x == table->subtableZ[x].next); #endif
if (x == xHigh) return(1); /* just one variable */
if (!zddGroupSiftingDown(table,x,xHigh,&moves)) goto zddGroupSiftingAuxOutOfMem; /* at this point x == xHigh, unless early term */
/* move backward and stop at best position */ result = zddGroupSiftingBackward(table,moves,initialSize); #ifdef DD_DEBUG
assert(table->keysZ <= (unsigned) initialSize); #endif
if (!result) goto zddGroupSiftingAuxOutOfMem;
} else if (cuddZddNextHigh(table,x) > xHigh) { /* Sift up */ #ifdef DD_DEBUG
/* x is bottom of group */ assert((unsigned) x >= table->subtableZ[x].next); #endif
/* Find top of x's group */ x = table->subtableZ[x].next;
if (!zddGroupSiftingUp(table,x,xLow,&moves)) goto zddGroupSiftingAuxOutOfMem; /* at this point x == xLow, unless early term */
/* move backward and stop at best position */ result = zddGroupSiftingBackward(table,moves,initialSize); #ifdef DD_DEBUG
assert(table->keysZ <= (unsigned) initialSize); #endif
if (!result) goto zddGroupSiftingAuxOutOfMem;
} else if (x - xLow > xHigh - x) { /* must go down first: shorter */ if (!zddGroupSiftingDown(table,x,xHigh,&moves)) goto zddGroupSiftingAuxOutOfMem; /* at this point x == xHigh, unless early term */
/* Find top of group */ if (moves) { x = moves->y; } while ((unsigned) x < table->subtableZ[x].next) x = table->subtableZ[x].next; x = table->subtableZ[x].next; #ifdef DD_DEBUG
/* x should be the top of a group */ assert((unsigned) x <= table->subtableZ[x].next); #endif
if (!zddGroupSiftingUp(table,x,xLow,&moves)) goto zddGroupSiftingAuxOutOfMem;
/* move backward and stop at best position */ result = zddGroupSiftingBackward(table,moves,initialSize); #ifdef DD_DEBUG
assert(table->keysZ <= (unsigned) initialSize); #endif
if (!result) goto zddGroupSiftingAuxOutOfMem;
} else { /* moving up first: shorter */ /* Find top of x's group */ x = table->subtableZ[x].next;
if (!zddGroupSiftingUp(table,x,xLow,&moves)) goto zddGroupSiftingAuxOutOfMem; /* at this point x == xHigh, unless early term */
if (moves) { x = moves->x; } while ((unsigned) x < table->subtableZ[x].next) x = table->subtableZ[x].next; #ifdef DD_DEBUG
/* x is bottom of a group */ assert((unsigned) x >= table->subtableZ[x].next); #endif
if (!zddGroupSiftingDown(table,x,xHigh,&moves)) goto zddGroupSiftingAuxOutOfMem;
/* move backward and stop at best position */ result = zddGroupSiftingBackward(table,moves,initialSize); #ifdef DD_DEBUG
assert(table->keysZ <= (unsigned) initialSize); #endif
if (!result) goto zddGroupSiftingAuxOutOfMem; }
while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; }
return(1);
zddGroupSiftingAuxOutOfMem: while (moves != NULL) { move = moves->next; cuddDeallocMove(table, moves); moves = move; }
return(0);
} /* end of zddGroupSiftingAux */
/**
@brief Sifts up a variable until either it reaches position xLow or the size of the %DD heap increases too much.
@details Assumes that y is the top of a group (or a singleton). Checks y for aggregation to the adjacent variables. Records all the moves that are appended to the list of moves received as input and returned as a side effect.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupSiftingUp( DdManager * table, int y, int xLow, Move ** moves) { Move *move; int x; int size; int gxtop; int limitSize;
limitSize = table->keysZ;
x = cuddZddNextLow(table,y); while (x >= xLow) { gxtop = table->subtableZ[x].next; if (table->subtableZ[x].next == (unsigned) x && table->subtableZ[y].next == (unsigned) y) { /* x and y are self groups */ size = cuddZddSwapInPlace(table,x,y); #ifdef DD_DEBUG
assert(table->subtableZ[x].next == (unsigned) x); assert(table->subtableZ[y].next == (unsigned) y); #endif
if (size == 0) goto zddGroupSiftingUpOutOfMem; move = (Move *)cuddDynamicAllocNode(table); if (move == NULL) goto zddGroupSiftingUpOutOfMem; move->x = x; move->y = y; move->flags = MTR_DEFAULT; move->size = size; move->next = *moves; *moves = move;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out, "zddGroupSiftingUp (2 single groups):\n"); #endif
if ((double) size > (double) limitSize * table->maxGrowth) return(1); if (size < limitSize) limitSize = size; } else { /* group move */ size = zddGroupMove(table,x,y,moves); if (size == 0) goto zddGroupSiftingUpOutOfMem; if ((double) size > (double) limitSize * table->maxGrowth) return(1); if (size < limitSize) limitSize = size; } y = gxtop; x = cuddZddNextLow(table,y); }
return(1);
zddGroupSiftingUpOutOfMem: while (*moves != NULL) { move = (*moves)->next; cuddDeallocMove(table, *moves); *moves = move; } return(0);
} /* end of zddGroupSiftingUp */
/**
@brief Sifts down a variable until it reaches position xHigh.
@details Assumes that x is the bottom of a group (or a singleton). Records all the moves.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupSiftingDown( DdManager * table, int x, int xHigh, Move ** moves) { Move *move; int y; int size; int limitSize; int gybot;
/* Initialize R */ limitSize = size = table->keysZ; y = cuddZddNextHigh(table,x); while (y <= xHigh) { /* Find bottom of y group. */ gybot = table->subtableZ[y].next; while (table->subtableZ[gybot].next != (unsigned) y) gybot = table->subtableZ[gybot].next;
if (table->subtableZ[x].next == (unsigned) x && table->subtableZ[y].next == (unsigned) y) { /* x and y are self groups */ size = cuddZddSwapInPlace(table,x,y); #ifdef DD_DEBUG
assert(table->subtableZ[x].next == (unsigned) x); assert(table->subtableZ[y].next == (unsigned) y); #endif
if (size == 0) goto zddGroupSiftingDownOutOfMem;
/* Record move. */ move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto zddGroupSiftingDownOutOfMem; move->x = x; move->y = y; move->flags = MTR_DEFAULT; move->size = size; move->next = *moves; *moves = move;
#ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out, "zddGroupSiftingDown (2 single groups):\n"); #endif
if ((double) size > (double) limitSize * table->maxGrowth) return(1); if (size < limitSize) limitSize = size; } else { /* Group move */ size = zddGroupMove(table,x,y,moves); if (size == 0) goto zddGroupSiftingDownOutOfMem; if ((double) size > (double) limitSize * table->maxGrowth) return(1); if (size < limitSize) limitSize = size; } x = gybot; y = cuddZddNextHigh(table,x); }
return(1);
zddGroupSiftingDownOutOfMem: while (*moves != NULL) { move = (*moves)->next; cuddDeallocMove(table, *moves); *moves = move; }
return(0);
} /* end of zddGroupSiftingDown */
/**
@brief Swaps two groups and records the move.
@return the number of keys in the %DD table in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupMove( DdManager * table, int x, int y, Move ** moves) { Move *move; int size; int i,j,xtop,xbot,xsize,ytop,ybot,ysize,newxtop; int swapx = 0, swapy = 0; #if defined(DD_DEBUG) && defined(DD_VERBOSE)
int initialSize,bestSize; #endif
#ifdef DD_DEBUG
/* We assume that x < y */ assert(x < y); #endif
/* Find top, bottom, and size for the two groups. */ xbot = x; xtop = table->subtableZ[x].next; xsize = xbot - xtop + 1; ybot = y; while ((unsigned) ybot < table->subtableZ[ybot].next) ybot = table->subtableZ[ybot].next; ytop = y; ysize = ybot - ytop + 1;
#if defined(DD_DEBUG) && defined(DD_VERBOSE)
initialSize = bestSize = table->keysZ; #endif
/* Sift the variables of the second group up through the first group */ for (i = 1; i <= ysize; i++) { for (j = 1; j <= xsize; j++) { size = cuddZddSwapInPlace(table,x,y); if (size == 0) goto zddGroupMoveOutOfMem; #if defined(DD_DEBUG) && defined(DD_VERBOSE)
if (size < bestSize) bestSize = size; #endif
swapx = x; swapy = y; y = x; x = cuddZddNextLow(table,y); } y = ytop + i; x = cuddZddNextLow(table,y); } #if defined(DD_DEBUG) && defined(DD_VERBOSE)
if ((bestSize < initialSize) && (bestSize < size)) (void) fprintf(table->out,"Missed local minimum: initialSize:%d bestSize:%d finalSize:%d\n",initialSize,bestSize,size); #endif
/* fix groups */ y = xtop; /* ytop is now where xtop used to be */ for (i = 0; i < ysize - 1; i++) { table->subtableZ[y].next = cuddZddNextHigh(table,y); y = cuddZddNextHigh(table,y); } table->subtableZ[y].next = xtop; /* y is bottom of its group, join */ /* it to top of its group */ x = cuddZddNextHigh(table,y); newxtop = x; for (i = 0; i < xsize - 1; i++) { table->subtableZ[x].next = cuddZddNextHigh(table,x); x = cuddZddNextHigh(table,x); } table->subtableZ[x].next = newxtop; /* x is bottom of its group, join */ /* it to top of its group */ #ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out,"zddGroupMove:\n"); #endif
/* Store group move */ move = (Move *) cuddDynamicAllocNode(table); if (move == NULL) goto zddGroupMoveOutOfMem; move->x = swapx; move->y = swapy; move->flags = MTR_DEFAULT; move->size = table->keysZ; move->next = *moves; *moves = move;
return(table->keysZ);
zddGroupMoveOutOfMem: while (*moves != NULL) { move = (*moves)->next; cuddDeallocMove(table, *moves); *moves = move; } return(0);
} /* end of zddGroupMove */
/**
@brief Undoes the swap two groups.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupMoveBackward( DdManager * table, int x, int y) { int size; int i,j,xtop,xbot,xsize,ytop,ybot,ysize,newxtop;
#ifdef DD_DEBUG
/* We assume that x < y */ assert(x < y); #endif
/* Find top, bottom, and size for the two groups. */ xbot = x; xtop = table->subtableZ[x].next; xsize = xbot - xtop + 1; ybot = y; while ((unsigned) ybot < table->subtableZ[ybot].next) ybot = table->subtableZ[ybot].next; ytop = y; ysize = ybot - ytop + 1;
/* Sift the variables of the second group up through the first group */ for (i = 1; i <= ysize; i++) { for (j = 1; j <= xsize; j++) { size = cuddZddSwapInPlace(table,x,y); if (size == 0) return(0); y = x; x = cuddZddNextLow(table,y); } y = ytop + i; x = cuddZddNextLow(table,y); }
/* fix groups */ y = xtop; for (i = 0; i < ysize - 1; i++) { table->subtableZ[y].next = cuddZddNextHigh(table,y); y = cuddZddNextHigh(table,y); } table->subtableZ[y].next = xtop; /* y is bottom of its group, join */ /* to its top */ x = cuddZddNextHigh(table,y); newxtop = x; for (i = 0; i < xsize - 1; i++) { table->subtableZ[x].next = cuddZddNextHigh(table,x); x = cuddZddNextHigh(table,x); } table->subtableZ[x].next = newxtop; /* x is bottom of its group, join */ /* to its top */ #ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out,"zddGroupMoveBackward:\n"); #endif
return(1);
} /* end of zddGroupMoveBackward */
/**
@brief Determines the best position for a variables and returns it there.
@return 1 in case of success; 0 otherwise.
@sideeffect None
*/ static int zddGroupSiftingBackward( DdManager * table, Move * moves, int size) { Move *move; int res;
for (move = moves; move != NULL; move = move->next) { if (move->size < size) { size = move->size; } }
for (move = moves; move != NULL; move = move->next) { if (move->size == size) return(1); if ((table->subtableZ[move->x].next == move->x) && (table->subtableZ[move->y].next == move->y)) { res = cuddZddSwapInPlace(table,(int)move->x,(int)move->y); if (!res) return(0); #ifdef DD_DEBUG
if (table->enableExtraDebug > 0) (void) fprintf(table->out,"zddGroupSiftingBackward:\n"); assert(table->subtableZ[move->x].next == move->x); assert(table->subtableZ[move->y].next == move->y); #endif
} else { /* Group move necessary */ res = zddGroupMoveBackward(table,(int)move->x,(int)move->y); if (!res) return(0); } }
return(1);
} /* end of zddGroupSiftingBackward */
/**
@brief Merges groups in the %DD table.
@details Creates a single group from low to high and adjusts the idex field of the tree node.
@sideeffect None
*/ static void zddMergeGroups( DdManager * table, MtrNode * treenode, int low, int high) { int i; MtrNode *auxnode; int saveindex; int newindex;
/* Merge all variables from low to high in one group, unless
** this is the topmost group. In such a case we do not merge lest ** we lose the symmetry information. */ if (treenode != table->treeZ) { for (i = low; i < high; i++) table->subtableZ[i].next = i+1; table->subtableZ[high].next = low; }
/* Adjust the index fields of the tree nodes. If a node is the
** first child of its parent, then the parent may also need adjustment. */ saveindex = treenode->index; newindex = table->invpermZ[low]; auxnode = treenode; do { auxnode->index = newindex; if (auxnode->parent == NULL || (int) auxnode->parent->index != saveindex) break; auxnode = auxnode->parent; } while (1); return;
} /* end of zddMergeGroups */
|