|
|
/**
@file
@ingroup cudd
@brief Returns a subset of minterms from a boolean function.
@author Balakrishna Kumthekar
@copyright@parblock Copyright (c) 1995-2015, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @endparblock
*/
#include "util.h"
#include "cuddInt.h"
/*---------------------------------------------------------------------------*/ /* Constant declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Type declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Structure declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Variable declarations */ /*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/ /* Macro declarations */ /*---------------------------------------------------------------------------*/
/** \cond */
/*---------------------------------------------------------------------------*/ /* Static function prototypes */ /*---------------------------------------------------------------------------*/
static DdNode * selectMintermsFromUniverse (DdManager *manager, int *varSeen, double n); static DdNode * mintermsFromUniverse (DdManager *manager, DdNode **vars, int numVars, double n, int index); static double bddAnnotateMintermCount (DdManager *manager, DdNode *node, double max, st_table *table);
/** \endcond */
/*---------------------------------------------------------------------------*/ /* Definition of exported functions */ /*---------------------------------------------------------------------------*/
/**
@brief Returns m minterms from a %BDD.
@details Returns <code>m</code> minterms from a %BDD whose support has <code>n</code> variables at most. The procedure tries to create as few extra nodes as possible. The function represented by <code>S</code> depends on at most <code>n</code> of the variables in <code>xVars</code>.
@return a %BDD with <code>m</code> minterms of the on-set of S if successful; NULL otherwise.
@sideeffect None
*/ DdNode * Cudd_SplitSet( DdManager * manager, DdNode * S, DdNode ** xVars, int n, double m) { DdNode *result; DdNode *zero, *one; double max, num; st_table *mtable; int *varSeen; int i,index, size;
size = manager->size; one = DD_ONE(manager); zero = Cudd_Not(one);
/* Trivial cases. */ if (m == 0.0) { return(zero); } if (S == zero) { return(NULL); }
max = pow(2.0,(double)n); if (m > max) return(NULL);
do { manager->reordered = 0; /* varSeen is used to mark the variables that are encountered
** while traversing the BDD S. */ varSeen = ALLOC(int, size); if (varSeen == NULL) { manager->errorCode = CUDD_MEMORY_OUT; return(NULL); } for (i = 0; i < size; i++) { varSeen[i] = -1; } for (i = 0; i < n; i++) { index = (xVars[i])->index; varSeen[manager->invperm[index]] = 0; }
if (S == one) { if (m == max) { FREE(varSeen); return(S); } result = selectMintermsFromUniverse(manager,varSeen,m); if (result) cuddRef(result); FREE(varSeen); } else { mtable = st_init_table(st_ptrcmp,st_ptrhash); if (mtable == NULL) { (void) fprintf(manager->out, "Cudd_SplitSet: out-of-memory.\n"); FREE(varSeen); manager->errorCode = CUDD_MEMORY_OUT; return(NULL); } /* The nodes of BDD S are annotated by the number of minterms
** in their onset. The node and the number of minterms in its ** onset are stored in mtable. */ num = bddAnnotateMintermCount(manager,S,max,mtable); if (m == num) { st_foreach(mtable,cuddStCountfree,NIL(void)); st_free_table(mtable); FREE(varSeen); return(S); } result = cuddSplitSetRecur(manager,mtable,varSeen,S,m,max,0); if (result) cuddRef(result); st_foreach(mtable,cuddStCountfree,NULL); st_free_table(mtable); FREE(varSeen); } } while (manager->reordered == 1); if (manager->errorCode == CUDD_TIMEOUT_EXPIRED && manager->timeoutHandler) { manager->timeoutHandler(manager, manager->tohArg); }
cuddDeref(result); return(result);
} /* end of Cudd_SplitSet */
/*---------------------------------------------------------------------------*/ /* Definition of internal functions */ /*---------------------------------------------------------------------------*/
/**
@brief Implements the recursive step of Cudd_SplitSet.
@details The procedure recursively traverses the %BDD and checks to see if any node satisfies the minterm requirements as specified by 'n'. At any node X, n is compared to the number of minterms in the onset of X's children. If either of the child nodes have exactly n minterms, then that node is returned; else, if n is greater than the onset of one of the child nodes, that node is retained and the difference in the number of minterms is extracted from the other child. In case n minterms can be extracted from constant 1, the algorithm returns the result with at most log(n) nodes.
@sideeffect The array 'varSeen' is updated at every recursive call to set the variables traversed by the procedure.
*/ DdNode* cuddSplitSetRecur( DdManager * manager, st_table * mtable, int * varSeen, DdNode * p, double n, double max, int index) { DdNode *one, *zero, *N, *Nv; DdNode *Nnv, *q, *r, *v; DdNode *result; double *dummy, numT, numE; int variable, positive; statLine(manager); one = DD_ONE(manager); zero = Cudd_Not(one);
/* If p is constant, extract n minterms from constant 1. The procedure by
** construction guarantees that minterms will not be extracted from ** constant 0. */ if (Cudd_IsConstantInt(p)) { q = selectMintermsFromUniverse(manager,varSeen,n); return(q); }
N = Cudd_Regular(p);
/* Set variable as seen. */ variable = N->index; varSeen[manager->invperm[variable]] = -1;
Nv = cuddT(N); Nnv = cuddE(N); if (Cudd_IsComplement(p)) { Nv = Cudd_Not(Nv); Nnv = Cudd_Not(Nnv); }
/* If both the children of 'p' are constants, extract n minterms from a
** constant node. */ if (Cudd_IsConstantInt(Nv) && Cudd_IsConstantInt(Nnv)) { q = selectMintermsFromUniverse(manager,varSeen,n); if (q == NULL) { return(NULL); } cuddRef(q); r = cuddBddAndRecur(manager,p,q); if (r == NULL) { Cudd_RecursiveDeref(manager,q); return(NULL); } cuddRef(r); Cudd_RecursiveDeref(manager,q); cuddDeref(r); return(r); } /* Lookup the # of minterms in the onset of the node from the table. */ if (!Cudd_IsConstantInt(Nv)) { if (!st_lookup(mtable, Nv, (void **) &dummy)) return(NULL); numT = *dummy/(2*(1U<<index)); } else if (Nv == one) { numT = max/(2*(1U<<index)); } else { numT = 0; } if (!Cudd_IsConstantInt(Nnv)) { if (!st_lookup(mtable, Nnv, (void **) &dummy)) return(NULL); numE = *dummy/(2*(1U<<index)); } else if (Nnv == one) { numE = max/(2*(1U<<index)); } else { numE = 0; }
v = cuddUniqueInter(manager,variable,one,zero); cuddRef(v);
/* If perfect match. */ if (numT == n) { q = cuddBddAndRecur(manager,v,Nv); if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q); Cudd_RecursiveDeref(manager,v); cuddDeref(q); return(q); } if (numE == n) { q = cuddBddAndRecur(manager,Cudd_Not(v),Nnv); if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q); Cudd_RecursiveDeref(manager,v); cuddDeref(q); return(q); } /* If n is greater than numT, extract the difference from the ELSE child
** and retain the function represented by the THEN branch. */ if (numT < n) { q = cuddSplitSetRecur(manager,mtable,varSeen, Nnv,(n-numT),max,index+1); if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q); r = cuddBddIteRecur(manager,v,Nv,q); if (r == NULL) { Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(r); Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); cuddDeref(r); return(r); } /* If n is greater than numE, extract the difference from the THEN child
** and retain the function represented by the ELSE branch. */ if (numE < n) { q = cuddSplitSetRecur(manager,mtable,varSeen, Nv, (n-numE),max,index+1); if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q); r = cuddBddIteRecur(manager,v,q,Nnv); if (r == NULL) { Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(r); Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); cuddDeref(r); return(r); }
/* None of the above cases; (n < numT and n < numE) and either of
** the Nv, Nnv or both are not constants. If possible extract the ** required minterms the constant branch. */ if (Cudd_IsConstantInt(Nv) && !Cudd_IsConstantInt(Nnv)) { q = selectMintermsFromUniverse(manager,varSeen,n); if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q); result = cuddBddAndRecur(manager,v,q); if (result == NULL) { Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(result); Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); cuddDeref(result); return(result); } else if (!Cudd_IsConstantInt(Nv) && Cudd_IsConstantInt(Nnv)) { q = selectMintermsFromUniverse(manager,varSeen,n); if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q); result = cuddBddAndRecur(manager,Cudd_Not(v),q); if (result == NULL) { Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(result); Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); cuddDeref(result); return(result); }
/* Both Nv and Nnv are not constants. So choose the one which
** has fewer minterms in its onset. */ positive = 0; if (numT < numE) { q = cuddSplitSetRecur(manager,mtable,varSeen, Nv,n,max,index+1); positive = 1; } else { q = cuddSplitSetRecur(manager,mtable,varSeen, Nnv,n,max,index+1); }
if (q == NULL) { Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(q);
if (positive) { result = cuddBddAndRecur(manager,v,q); } else { result = cuddBddAndRecur(manager,Cudd_Not(v),q); } if (result == NULL) { Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); return(NULL); } cuddRef(result); Cudd_RecursiveDeref(manager,q); Cudd_RecursiveDeref(manager,v); cuddDeref(result);
return(result);
} /* end of cuddSplitSetRecur */
/*---------------------------------------------------------------------------*/ /* Definition of static functions */ /*---------------------------------------------------------------------------*/
/**
@brief This function prepares an array of variables which have not been encountered so far when traversing the procedure cuddSplitSetRecur.
@details This array is then used to extract the required number of minterms from a constant 1. The algorithm guarantees that the size of %BDD will be at most log(n).
@sideeffect None
*/ static DdNode * selectMintermsFromUniverse( DdManager * manager, int * varSeen, double n) { int numVars; int i, size, j; DdNode *one, *zero, *result; DdNode **vars;
numVars = 0; size = manager->size; one = DD_ONE(manager); zero = Cudd_Not(one);
/* Count the number of variables not encountered so far in procedure
** cuddSplitSetRecur. */ for (i = size-1; i >= 0; i--) { if(varSeen[i] == 0) numVars++; } vars = ALLOC(DdNode *, numVars); if (!vars) { manager->errorCode = CUDD_MEMORY_OUT; return(NULL); }
j = 0; for (i = size-1; i >= 0; i--) { if(varSeen[i] == 0) { vars[j] = cuddUniqueInter(manager,manager->perm[i],one,zero); cuddRef(vars[j]); j++; } }
/* Compute a function which has n minterms and depends on at most
** numVars variables. */ result = mintermsFromUniverse(manager,vars,numVars,n, 0); if (result) cuddRef(result);
for (i = 0; i < numVars; i++) Cudd_RecursiveDeref(manager,vars[i]); FREE(vars);
return(result);
} /* end of selectMintermsFromUniverse */
/**
@brief Recursive procedure to extract n mintems from constant 1.
@sideeffect None
*/ static DdNode * mintermsFromUniverse( DdManager * manager, DdNode ** vars, int numVars, double n, int index) { DdNode *one, *zero; DdNode *q, *result; double max, max2; statLine(manager); one = DD_ONE(manager); zero = Cudd_Not(one);
max = pow(2.0, (double)numVars); max2 = max / 2.0;
if (n == max) return(one); if (n == 0.0) return(zero); /* if n == 2^(numVars-1), return a single variable */ if (n == max2) return vars[index]; else if (n > max2) { /* When n > 2^(numVars-1), a single variable vars[index]
** contains 2^(numVars-1) minterms. The rest are extracted ** from a constant with 1 less variable. */ q = mintermsFromUniverse(manager,vars,numVars-1,(n-max2),index+1); if (q == NULL) return(NULL); cuddRef(q); result = cuddBddIteRecur(manager,vars[index],one,q); } else { /* When n < 2^(numVars-1), a literal of variable vars[index]
** is selected. The required n minterms are extracted from a ** constant with 1 less variable. */ q = mintermsFromUniverse(manager,vars,numVars-1,n,index+1); if (q == NULL) return(NULL); cuddRef(q); result = cuddBddAndRecur(manager,vars[index],q); } if (result == NULL) { Cudd_RecursiveDeref(manager,q); return(NULL); } cuddRef(result); Cudd_RecursiveDeref(manager,q); cuddDeref(result); return(result);
} /* end of mintermsFromUniverse */
/**
@brief Annotates every node in the %BDD node with its minterm count.
@details In this function, every node and the minterm count represented by it are stored in a hash table.
@sideeffect Fills up 'table' with the pair <node,minterm_count>.
*/ static double bddAnnotateMintermCount( DdManager * manager, DdNode * node, double max, st_table * table) {
DdNode *N,*Nv,*Nnv; double min_v,min_nv; double min_N; double *pmin; double *dummy;
statLine(manager); N = Cudd_Regular(node); if (cuddIsConstant(N)) { if (node == DD_ONE(manager)) { return(max); } else { return(0.0); } }
if (st_lookup(table, node, (void **) &dummy)) { return(*dummy); } Nv = cuddT(N); Nnv = cuddE(N); if (N != node) { Nv = Cudd_Not(Nv); Nnv = Cudd_Not(Nnv); }
/* Recur on the two branches. */ min_v = bddAnnotateMintermCount(manager,Nv,max,table) / 2.0; if (min_v == (double)CUDD_OUT_OF_MEM) return ((double)CUDD_OUT_OF_MEM); min_nv = bddAnnotateMintermCount(manager,Nnv,max,table) / 2.0; if (min_nv == (double)CUDD_OUT_OF_MEM) return ((double)CUDD_OUT_OF_MEM); min_N = min_v + min_nv;
pmin = ALLOC(double,1); if (pmin == NULL) { manager->errorCode = CUDD_MEMORY_OUT; return((double)CUDD_OUT_OF_MEM); } *pmin = min_N;
if (st_insert(table, node, pmin) == ST_OUT_OF_MEM) { FREE(pmin); return((double)CUDD_OUT_OF_MEM); } return(min_N);
} /* end of bddAnnotateMintermCount */
|