Logic and Computability SS22,
Practical Bonus Assignment 4

Due 04. 06. 2021

1. [5 Points] Seating Arrangement Problem. For our final programming
exercise we take a look at the seating arrangement problem. The prob-
lem that you are facing is the following: There are only a few hours
left before your weeding and you have lost the seating plan for the big
table. You and your friends have gathered a list of all to be seated
at the big table, but you cannot simply place them in any order since
this could lead to some unpleasent situations. Alongside the list of
members at the table you have also come up with a pairs of people
which need to be seated next to each other and some which need to
have some other guests in between.

For this exercise we will use our knowledge about custom Z3 data
types and make use of uninterpreted functions.

You will be given a program skeleton which prepares the parsing of
an input file. An input file consists of multiple lines which may either
have

e a pair of friends: Bob likes Alice,

e a pair of foes: Ada dislikes Bob,

e a guest without preferences: John or

e a comment: #John likes Ada.
Your tasks are to:

(a) Extend the parsing of the skeleton in such a way that the prepared
data structures get filled with Z3 variables.

(b) Define a Z3 uninterpreted function which maps our guests to
enumerated positions at the table.

(c) Define a function neighbours which returns whether two guests
are neighbours.

(d) Each guest should sit at exactly one position at the table.

(e) Friends need to be seated next to each other and foes must not
be seated next to each other.

We represent the positions at our table with an uninterpreted function
which maps to the integer positions at the table. Note that the table
wraps around on both edges of this integer list that we are mapping
to, i.e. position O is right next to position len(guests).

If we can find a proper seating plan which adheres to our given con-
straints we will visualize it otherwise Z3 will tell us that this is not sat-
isfiable. Note that Z3 will not fully define our uninterpreted function
but we can get around that by extending our call tomodel.evaluate(. ..
tomodel.evaluate(. .. ,model _completion=True), which will assing
all free variables. The seating plan will be visualized with a table
in your terminal and as a list of the mapping in the very end of our
program call.

Patric dislikes Ada
Patric dislikes Katie
Patric dislikes Bob
Ada

John likes Alice
Bob likes Andrea
Andrea

Alice

Ada likes Julia

Ada likes Katie
Robert

Figure 1: The constraints and member list that you have come up with.

Patric Robert
Andrea | <<<<<<<<LLLLLLLLLLLLL< | Katie
[>>55>55>55>55>55>5>>> |
Bob | <<<<<<<<<<<<<<<<<<<<< | Ada
[>>55>55>55>55>55>55>> |
John | <<<<<LLLLLLLLLLLLLLLL |

Alice Julia

Seating plan:
[’Patric’, ’Robert’, ’Katie’, ’Ada’, ’Julia’,
’Alice’, ’John’, ’Bob’, ’Andrea’]

Figure 2: A possible seating plan for the given input file from Fig. ?7.

