
Logic and Computability SS21,

Practical Bonus Assignment

Due: 16. 04. 2021

1. [5 Points] Magic Square. For this first programming exercise we will
have a look at the classic pen and paper puzzle called magic square.
The premise of the game is very intuitive. You are given a grid of
numbers, where some of them might be missing. Your goal is to deter-
mine the missing numbers so that the sum in each row, column, and
diagonal is the same. In a sense, you are trying to balance out the
square of numbers. If you want to get a better feeling for the problem,
you can play around with the Magic Square app from the Play Store.

The magic square is read from a file, where the numbers are separated
by spaces and unknown cells are marked with ” ”. For the test0.txt

the resulting magic square is shown in Figure 1.

Note that the size of the grid is not fixed but may vary, whilst always
going to be square.

28
35 21
7

Figure 1: Example of a magic square.

Our goal is then to find the missing cells and fill out the square. This
is where the SMT solver can help us! An example solution is shown
in Figure 2.

1

https://play.google.com/store/apps/details?id=com.littletrickstudio.derek.chinesemagicsquare&hl=en


14 63 28
49 35 21
42 7 56

Figure 2: Solution of the example magic square.

Here is a short list of tasks you need to implement in square.py when
solving this programming exercise.

(a) Create a Z3 integer variable for each of the cells in the magic
square. You should probably give them meaningful names like
C 0 0, C 1 2 or similar. This will make it easier to debug.

(b) Enforce that the known numbers have the expected value. This
one is self explanatory, since we cannot change the value of the
predefined cells.

(c) Create a magic Z3 integer variable which will hold the sum. This
variable is used to enforce that all the rows, columns and both
diagonals add up to the same number.

(d) Enforce that all columns add up to the magic variable.

(e) Enforce that all rows add up to the magic variable.

(f) Enforce that both diagonals add up to the magic variable.

Everything else is already implemented in the template that you can
pull from our upstream repository. For details on how to do that,
please consult the provided README.md. The template handles the
parsing of the input file, and the printing of the solved square. The
only additional Python library is z3-solver which you need to install
through pip install z3-solver. If you get stuck, you can always
drop us a message in our Discord channel. Keep in mind that the
implementations of the subtasks are often no more than two or three
lines of code, so avoid thinking of super non-obvious solutions. Good
luck and have fun with the exercise.

2


